Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity and the formation of chloro-organic DBPs such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine, we hypothesised that the created reactivity to chlorine, as a result of the UV treatment of dissolved organic matter in swimming pool water, might also be expressed as increased reactivity to ozone. Moreover, ozonation might saturate the chlorine reactivity created by UV treatment and mitigate increased formation of a range of volatile DBPs. We found that UV treatment makes pool water highly reactive to ozone. The subsequent reactivity to chlorine decreases with increasing ozone dosage prior to contact with chlorine. Furthermore, ozone had a half-life of 5 min in non-UV treated pool water whereas complete consumption of ozone was obtained in less than 2 min in UV treated pool water. The ozonation of UV-treated pool water induced the formation of some DBPs that are not commonly reported in this medium, in particular trichloronitromethane, which is noteworthy for its genotoxicity, though this issue was removed by UV treatment when repeated combined UV/ozone treatment interchanging with chlorination was conducted over a 24-h period. The discovered reaction could form the basis for a new treatment method for swimming pools.
Hospital wastewater contains high concentrations of pharmaceuticals, which pose risks to receiving waters. In this study, a pilot plant consisting of six moving bed biofilm reactors (MBBRs) in series (with the intention to integrate Biological Oxygen Demand (BOD) removal, nitrification and denitrification as well as prepolishing Chemical Oxygen Demand (COD) for ozonation) was built to integrate pharmaceutical removal and intermittent feeding of the latter reactors aimed for micropollutant removal. Based on the experimental resultss, nitrifying MBBRs achieved higher removal as compared to denitrifying MBBRs except for azithromycin, clarithromycin, diatrizoic acid, propranolol and trimethoprim. In the batch experiments, nitrifying MBBRs showed the ability to remove most of the analysed pharmaceuticals, with degradation rate constants ranging from 5.0 × 10 h to 2.6 h. In general, the highest degradation rate constants were observed in the nitrifying MBBRs while the latter MBBRs showed lower degradation rate constant. However, when the degradation rate constants were normalised to the respective biomass, the intermittently fed reactors presented the highest specific activity. Out of the 22 compounds studied, 17 compounds were removed with more than 20%.
Previous studies have demonstrated that aerobic moving bed biofilm reactors (MBBRs) remove pharmaceuticals better than activated sludge. Thus we used a MBBR system to polish the effluent of an activated sludge wastewater treatment plant. To overcome that effluent contains insufficient organic matter to sustain enough biomass, the biofilm was intermittently fed with raw wastewater. The capacity of pharmaceutical degradation was investigated by spiking pharmaceuticals. Actual removal during treatment was assessed by sampling the inlets and outlets of reactors. The removal of the majority of pharmaceuticals was enhanced through the intermittent feeding of the MBBR. First-order rate constants for pharmaceutical removal, normalised to biomass, were significantly higher compared to other studies on activated sludge and suspended biofilms, especially for diclofenac, metoprolol and atenolol. Due to the intermittently feeding, degradation of diclofenac occurred with a half-life of only 2.1h and was thus much faster than any hitherto described wastewater bioreactor treatment.
To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic compound concentration changes during ozonation. Ozone reactions were described by first order kinetics. Organic matter, assessed as chemical oxygen demand and fluorescence, decreased by 25% (low O), 30% (middle O) and 53% (high O), while water transmittance improved by 15% over an 8-day period. No fish mortality was observed. Overall, this study confirms that ozone can improve RAS water quality, provides a better understanding of the ozone decay mechanisms that can be used to define further safe ozone treatment margins, and that fluorescence could be used as a monitoring tool to control ozone. This study might be used as a tool to design ozone systems for full-scale RAS by analysing water sample from the specific RAS in the laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.