Studies of essential genes in bacteria are often hampered by the lack of accessible genetic tools. This is also the case for Lactobacillus plantarum, a key species in food and health applications. Here, we develop a clustered regularly interspaced short palindromic repeat interference (CRISPRi) system for knockdown of gene expression in L. plantarum. The two-plasmid CRISPRi system, in which a nuclease-inactivated Cas9 (dCas9) and a gene-specific single guide RNA (sgRNA) are expressed on separate plasmids, allows efficient knockdown of expression of any gene of interest. We utilized the CRISPRi system to gain initial insights into the functions of key cell cycle genes in L. plantarum. As a proof of concept, we investigated the phenotypes resulting from knockdowns of the cell wall hydrolase-encoding acm2 gene and of the DNA replication initiator gene dnaA and of ezrA, which encodes an early cell division protein. Furthermore, we studied the phenotypes of three cell division genes which have recently been functionally characterized in ovococcal bacteria but whose functions have not yet been investigated in rod-shaped bacteria. We show that the transmembrane CozE proteins do not seem to play any major role in cell division in L. plantarum. On the other hand, RNA-binding proteins KhpA and EloR are critical for proper cell elongation in this bacterium. IMPORTANCE L. plantarum is an important bacterium for applications in food and health. Deep insights into the biology and physiology of this species are therefore necessary for further strain optimization and exploitation; however, the functions of essential genes in the bacterium are mainly unknown due to the lack of accessible genetic tools. The CRISPRi system developed here is ideal to quickly screen for phenotypes of both essential and nonessential genes. Our initial insights into the function of some key cell cycle genes represent the first step toward understanding the cell cycle in this bacterium.
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved numerous antimicrobial resistance mechanisms and is identified as a serious public health threat by the World Health Organization and U.S. Centers for Disease Control and Prevention. The glycopeptide vancomycin (VAN) remains a cornerstone of therapy for severe MRSA infections despite increasing reports of therapeutic failure in hospitalized patients with bacteremia or pneumonia. Recently, the role of released bacterial-derived membrane vesicles (MVs) in antibiotic resistance has garnered attention. Here we examined the effect of exogenous MRSA-derived MVs on VAN activity against MRSA in vitro, using minimum inhibitory concentration and checkerboard assays, and ex vivo, incorporating components of host innate immunity such as neutrophils and serum complement present in blood. Additionally, the proteome of MVs from VAN-exposed MRSA was characterized to determine if protein expression was altered. The presence of MVs increased the VAN MIC against MRSA to values where clinical failure is commonly observed. Furthermore, the presence of MVs increased survival of MRSA pre-treated with sub-MIC concentrations of VAN in whole blood and upon exposure to human neutrophils but not human serum. Unbiased proteomic analysis also showed an elevated expression of MV proteins associated with antibiotic resistance (e.g., marR) or proteins that are functionally linked to cell membrane/wall metabolism. Together, our findings indicate MRSA-derived MVs are capable of lowering susceptibility of the pathogen to VAN, whole-blood- and neutrophil-mediated killing, a new pharmacodynamic consideration for a drug increasingly linked to clinical treatment failures.
The bacille Calmette-Guèrin (BCG) vaccine has been used for a century; nonetheless, tuberculosis (TB) remains one of the deadliest diseases in the world. Thus, new approaches to developing a new, more efficient vaccine are desirable. Mucosal vaccines are of particular interest, considering that Mycobacterium tuberculosis first enters the body through the mucosal membranes. We have previously demonstrated the immunogenicity of a recombinant Lactiplantibacillus plantarum delivery vector with TB hybrid antigen Ag85B-ESAT-6 anchored to the cell membrane. The goal of the present study was to analyze the impact of antigen localization in the immune response. Thus, we assessed two novel vaccine candidates, with the TB antigen either non-covalently anchored to the cell wall (LysMAgE6) or located intracellularly (CytAgE6). In addition, we compared two expression systems, using an inducible (LipoAgE6) or a constitutive promoter (cLipoAgE6) for expression of covalently anchored antigen to the cell membrane. Following administration to mice, antigen-specific CD4+ T-cell proliferation and IFN-γ and IL-17A secretion were analyzed for lung cell and splenocyte populations. Generally, the immune response in lung cells was stronger compared to splenocytes. The analyses showed that the type of expression system did not significantly affect the immunogenicity, while various antigen localizations resulted in markedly different responses. The immune response was considerably stronger for the surface-displaying candidate strains compared to the candidate with an intracellular antigen. These findings emphasize the significance of antigen exposure and further support the potential of L. plantarum as a mucosal vaccine delivery vehicle in the fight against TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.