BackgroundOsteoarthritis (OA) is a degenerative joint disease that results in the destruction of cartilage. Edible Bird’s Nest (EBN) extract contains important components, which can reduce the progression of osteoarthritis and helps in the regeneration of the cartilage. The present study aimed to investigate the effect of EBN extract on the catabolic and anabolic activities of the human articular chondrocytes (HACs) isolated from the knee joint of patients with OA.MethodsA single batch of EBN extract was prepared with hot-water extraction and coded as HMG. HACs were isolated from the knee joint cartilage removed during surgery. The optimum concentration of HMG for HAC cultures was determined using MTT assay. The effect of HMG on the catabolic and anabolic genes’ expression in HACs was measured by real-time PCR. The total amount of prostaglandin E2 (PGE2) production was determined by ELISA method, and the total sulphated glycosaminoglycan (GAGs) production was quantified by 1,9-dimethylmethylene blue (DMMB) assay.ResultsMTT assay showed 0.50% - 1.00% HMG supplementation promoted HACs proliferation. HMG supplementation was able to reduce the catabolic genes’ expression in cultured HACs such as matrix metalloproteinases (MMP1 & MMP3), Interleukin 1, 6 and 8 (IL-1, IL-6 & IL-8), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Prostaglandin E2 (PGE2) production was significantly reduced in HAC cultures supplemented with HMG. With regard to anabolic activity assessment, type II collagen, Aggrecan and SOX-9 gene expression as well as sGAG production was increased in the HMG supplemented groups.ConclusionEdible Bird’s Nest extract coded as HMG demonstrated chondro-protection ability on human articular chondrocytes in vitro. It reduced catabolic activities and increased cartilage extracellular matrix synthesis. It is concluded that HMG is a potential agent in the treatment of osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.