Rice is a staple food for more than 3 billion people in more than 100 countries of the world but ironically it is deficient in many bioavailable vitamins, minerals, essential amino- and fatty-acids and phytochemicals that prevent chronic diseases like type 2 diabetes, heart disease, cancers, and obesity. To enhance the nutritional and other quality aspects of rice, a better understanding of the regulation of the processes involved in the synthesis, uptake, transport, and metabolism of macro-(starch, seed storage protein and lipid) and micronutrients (vitamins, minerals and phytochemicals) is required. With the publication of high quality genomic sequence of rice, significant progress has been made in identification, isolation, and characterization of novel genes and their regulation for the nutritional and quality enhancement of rice. During the last decade, numerous efforts have been made to refine the nutritional and other quality traits either by using the traditional breeding with high through put technologies such as marker assisted selection and breeding, or by adopting the transgenic approach. A significant improvement in vitamins (A, folate, and E), mineral (iron), essential amino acid (lysine), and flavonoids levels has been achieved in the edible part of rice, i.e., endosperm (biofortification) to meet the daily dietary allowance. However, studies on bioavailability and allergenicity on biofortified rice are still required. Despite the numerous efforts, the commercialization of biofortified rice has not yet been achieved. The present review summarizes the progress and challenges of genetic engineering and/or metabolic engineering technologies to improve rice grain quality, and presents the future prospects in developing nutrient dense rice to save the everincreasing population, that depends solely on rice as the staple food, from widespread nutritional deficiencies.
The primary objectives of modern agriculture includes the environmental sustainability, low production costs, improved plants’ resilience to various biotic and abiotic stresses, and high sowing seed value. Delayed and inconsistent field emergence poses a significant threat in the production of agri-crop, especially during drought and adverse weather conditions. To open new routes of nutrients’ acquisition and revolutionizing the adapted solutions, stewardship plans will be needed to address these questions. One approach is the identification of plant based bioactive molecules capable of altering plant metabolism pathways which may enhance plant performance in a brief period of time and in a cost-effective manner. A biostimulant is a plant material, microorganism, or any other organic compound that not only improves the nutritional aspects, vitality, general health but also enhances the seed quality performance. They may be effectively utilized in both horticultural and cereal crops. The biologically active substances in biostimulant biopreparations are protein hydrolysates (PHs), seaweed extracts, fulvic acids, humic acids, nitrogenous compounds, beneficial bacterial, and fungal agents. In this review, the state of the art and future prospects for biostimulant seedlings are reported and discussed. Biostimulants have been gaining interest as they stimulate crop physiology and biochemistry such as the ratio of leaf photosynthetic pigments (carotenoids and chlorophyll), enhanced antioxidant potential, tremendous root growth, improved nutrient use efficiency (NUE), and reduced fertilizers consumption. Thus, all these properties make the biostimulants fit for internal market operations. Furthermore, a special consideration has been given to the application of biostimulants in intensive agricultural systems that minimize the fertilizers’ usage without affecting quality and yield along with the limits imposed by European Union (EU) regulations.
Rice straw, a by-product of the rice production is mainly used as a source of feed for ruminant livestock is the major forage in rice-producing areas in India. The disposal of the rice straw is a serious problem in areas where it is the major agricultural product. It is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by rumen microbes. By rice straw treatment, its quality and digestibility can be improved and enhanced the protein content. Several methods have been used to improve the utilization of rice straw by ruminants or supplemented by other ingredients to increase digestibility and nutrient value before it can be considered a suitable animal feed. In recent years, biological treatments have been investigated for improvement in nutritional value of rice straw. The use of ligninolytic fungi and their extracellular ligninolytic enzymes for treatment of rice straw results in degrading cellulose and hemicelluloses contents which improve its nutritional value. The use of fungi and enzyme treatments is expected to be a practical, cost-effective and environmental-friendly approach for enhancing the nutritive value and digestibility of rice straw. Therefore, the treated rice straw has a good potential as feed for ruminants.
Chlorantraniliprole, a new systemic insecticide of anthranilic diamide class gaining popularity among farmers for its effective control of Lepidoptera pest particularly in vegetables. Thus monitoring of chlorantraniliprole (CAP) leftover in vegetables is required and to this end eco-friendly, cost effective, selective and accurate method was developed and validated for quantification of its left over in chilli fruit using gas chromatography-tandem mass spectrometry (GC-MS/MS) in SCAN/MRM mode with a triple Quadrupole analyzer. Two MS-MS transitions were acquired to ensure the reliable quantification and confirmation of the analyte. All calibration curve showed a good linear relationship (r [ 0.99) with in test ranges (0.005-0.5 lg ml-1). To study its persistence, half-life, waiting period and decontamination behavior the field trial were performed at recommended dose and its double by Central Insecticide Board and Registration Committee (CIBRC). Initial deposits of CAP at recommended (T1) and double (T2) the recommended doses revealed 3.16 and 4.18 mg kg-1 with their respective half-lives 1.18 and 2.05 days respectively. According to maximum residual limit i.e. 0.03 mg kg-1 by FSSAI, residues persists up to 7th and 15th day if sprayed at fruit setting stage. The extent of removal of CAP using simple decontamination approach showed 62-67% reduction on maximum residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.