Now a days, more than 200 countries faces the health crisis due to epidemiological disease COVID-19 caused by SARS-CoV-2 virus. It will cause a very high impact on world’s economy and global health sector. Earlier the structure of main protease (M
pro
) protein was deposited in the RCSB protein repository. Hydroxychloroquine (HCQ) and remdesivir were found to effective in treatment of COVID-19 patients. Here we have performed docking and molecule dynamic (MD) simulation study of HCQ and remdesivir with M
pro
protein which gave promising results to inhibit M
pro
protein in SARS-CoV-2. On the basis of results obtained we designed structurally modified 18 novel derivatives of HCQ, remdesivir and tetrahydrocannabinol (THC) and carried out docking studies of all the derivatives. From the docking studies six molecules DK4, DK7, DK10, DK16, DK17 and DK19 gave promising results and can be use as inhibitor for M
pro
of SARS-CoV-2 to control COVID-19 very effectively. Further, molecular dynamics simulation of one derivative of HCQ and one derivative of tetrahydrocannabinol showing excellent docking score was performed along with the respective parent molecules. The two derivatives gave excellent docking score and higher stability than the parent molecule as validated with molecular dynamics (MD) simulation for the binding affinities towards M
pro
of SARS-CoV-2 thus represented as strong inhibitors at very low concentration.
Rational design and development of photocatalytic materials is of paramount importance for efficient utilization of solar energy in photocatalytic applications.
Mn ion doped ZnO with different percentages of Mn content (Zn0.9Mn0.1O (1), Zn0.8Mn0.2O (2), Zn0.7Mn0.3O (3), and Zn0.6Mn0.4O (4)) was synthesized via a solution combustion method, with urea used as the fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.