Purpose -This paper aims to present the development of an electrospinning-based rapid prototyping (ESRP) technique for the fabrication of patterned scaffolds from fine fiber. Design/methodology/approach -This ESRP technique unifies rapid prototyping (RP) and electrospinning to obtain the ability of RP to create a controllable pattern and of electrospinning to create a continuous fine fiber. The technique follows RP process of fused deposition modeling, but instead of using extrusion process for fiber creation, electrospinning is applied to generate a continuous fiber from a liquid solution. A machine prototype has been constructed and used in the experiments to evaluate the technique. Findings -Three different lay-down patterns: 0°/90°, 45°/135°and 45°twists were used in the experiments. According to the experimental results, stacks of patterned layers could be created with the ESRP technique, and the fabrication process was repeatable and reproducible. However, the existing machine vibration influenced the fiber size and the ability to control straightness and gap size. Also, incomplete solidification of the fibers prior to being deposited obstructed the control of layer thickness. Improvement on vibration suppression and fiber solidification will strengthen the capability of this ESRP technique. Research limitations/implications -This research is currently limited to the introduction of the ESRP technique, to the development of the machine prototype, to the demonstration of its capability and to the evaluation of the structural properties of the fabricated patterned scaffolds. Further studies are required for better control of the patterned scaffolds and for investigation of mechanical and biological properties. Originality/value -This unification of the two processes allows not only the fabrication of controllable patterned scaffolds but also the fabrication of both woven and non-woven layers of fibers to be done on one machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.