The cerebellum has been implicated in a number of nonmotor mental disorders such as autism spectrum disorder, schizophrenia, and addiction. However, its contribution to these disorders is not well understood. In mice, we found that the cerebellum sends direct excitatory projections to the ventral tegmental area (VTA), one of the brain regions that processes and encodes reward. Optogenetic activation of the cerebello-VTA projections was rewarding and, in a three-chamber social task, these projections were more active when the animal explored the social chamber. Intriguingly, activity in the cerebello-VTA pathway was required for the mice to show social preference in this task. Our data delineate a major, previously unappreciated role for the cerebellum in controlling the reward circuitry and social behavior.
Recent studies have identified impairments in neural induction and in striatal and cortical neurogenesis in Huntington’s disease (HD) knock-in mouse models and associated embryonic stem cell lines. However, the potential role of these developmental alterations for HD pathogenesis and progression is currently unknown. To address this issue, we used BACHD:CAG-CreERT2 mice, which carry mutant huntingtin (mHtt) modified to harbor a floxed exon 1 containing the pathogenic polyglutamine expansion (Q97). Upon tamoxifen administration at postnatal day 21, the floxed mHtt-exon1 was removed and mHtt expression was terminated (Q97CRE). These conditional mice displayed similar profiles of impairments to those mice expressing mHtt throughout life: (i) striatal neurodegeneration, (ii) early vulnerability to NMDA-mediated excitotoxicity, (iii) impairments in motor coordination, (iv) temporally distinct abnormalities in striatal electrophysiological activity, and (v) altered corticostriatal functional connectivity and plasticity. These findings strongly suggest that developmental aberrations may play important roles in HD pathogenesis and progression.
DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down in select brain regions of adult mice using shRNAs. TorsinA knockdown in the cerebellum, but not in the basal ganglia, was sufficient to induce dystonia. In agreement with a potential developmental compensation for loss of torsinA in rodents, torsinA knockdown in the immature cerebellum failed to produce dystonia. Abnormal motor symptoms in knockdown animals were associated with irregular cerebellar output caused by changes in the intrinsic activity of both Purkinje cells and neurons of the deep cerebellar nuclei. These data identify the cerebellum as the main site of dysfunction in DYT1, and offer new therapeutic targets.DOI: http://dx.doi.org/10.7554/eLife.22775.001
Loss-of-function mutations in the α3 isoform of the sodium pump are responsible for Rapid Onset Dystonia-Parkinsonism (RDP). A pharmacologic model of RDP replicates the most salient features of RDP, and implicates both the cerebellum and basal ganglia in the disorder; dystonia is associated with aberrant cerebellar output, and the parkinsonism-like features are attributable to the basal ganglia. The pharmacologic agent used to generate the model, ouabain, is selective for sodium pumps. However, close to the infusion sites in vivo it likely affects all sodium pump isoforms. Therefore, it remains to be established whether selective loss of α3-containing sodium pumps replicates the pharmacologic model. Moreover, while the pharmacologic model suggested that aberrant firing of Purkinje cells was the main cause of abnormal cerebellar output, it did not allow the scrutiny of this hypothesis. To address these questions RNA interference using small hairpin RNAs (shRNAs) delivered via adeno-associated viruses (AAV) was used to specifically knockdown α3-containing sodium pumps in different regions of the adult mouse brain. Knockdown of the α3-containing sodium pumps mimicked both the behavioral and electrophysiological changes seen in the pharmacologic model of RDP, recapitulating key aspects of the human disorder. Further, we found that knockdown of the α3 isoform altered the intrinsic pacemaking of Purkinje cells, but not the neurons of the deep cerebellar nuclei. Therefore, acute knockdown of proteins associated with inherited dystonias may be a good strategy for developing phenotypic genetic mouse models where traditional transgenic models have failed to produce symptomatic mice.
Many cerebellar-induced neurological disorders, such as ataxias and cerebellar-induced dystonias, are associated with abnormal Purkinje cell activity. In tottering mice, a well-established mouse model of episodic ataxia type 2 (EA2), cerebellar Purkinje cells are required for the initiation of motor attacks. How Purkinje cells contribute to the initiation of attacks is not known, and to date there are no reports on the activity of Purkinje cells during motor attacks in the tottering mice. Here, we show that tottering Purkinje cells exhibit high-frequency burst firing during attacks, reminiscent of other mouse models of cerebellar-induced motor dysfunction. We recorded the activity of Purkinje cells in awake head-restrained tottering mice at baseline, or during caffeine-induced attacks. During motor attacks, firing of Purkinje cells transformed to high-frequency burst firing. Interestingly, the extent to which the activity of Purkinje cells was erratic was correlated with the severity of the motor dysfunction. In support of a causal role for erratic activity in generating motor dysfunction, we found that direct infusion of the small conductance calcium-activated potassium (SK) channel activator NS309 into the cerebellum of tottering mice in the midst of an attack normalized the firing of Purkinje cells and aborted attacks. Conversely, we found that inducing high-frequency burst firing of Purkinje cells in wild-type animals is sufficient to produce severe motor signs. We report that erratic activity of wild-type Purkinje cells results in ataxia and dystonic postures. Moreover, this aberrant activity is the cause of motor attacks in the tottering mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.