Diabetes is a global epidemic problem growing exponentially in Asian countries posing a serious threat. Among diabetes, maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders that occurs due to β cell dysfunction. Genetic defects in the pancreatic β-cells result in the decrease of insulin production required for glucose utilization thereby lead to early-onset diabetes (often <25 years). It is generally considered as non-insulin dependent form of diabetes and comprises of 1–5% of total diabetes. Till date, 14 genes have been identified and mutation in them may lead to MODY. Different genetic testing methodologies like linkage analysis, restriction fragment length polymorphism, and DNA sequencing are used for the accurate and correct investigation of gene mutations associated with MODY. The next-generation sequencing has emerged as one of the most promising and effective tools to identify novel mutated genes related to MODY. Diagnosis of MODY is mainly relying on the sequential screening of the three marker genes like hepatocyte nuclear factor 1 alpha (HNF1α), hepatocyte nuclear factor 4 alpha (HNF4α), and glucokinase (GCK). Interestingly, MODY patients can be managed by diet alone for many years and may also require minimal doses of sulfonylureas. The primary objective of this article is to provide a review on current status of MODY, its prevalence, genetic testing/diagnosis, possible treatment, and future perspective.
Quinone oxidoreductases (NAD(P)H): quinone oxidoreductase 1 (NQO1) and NRH: quinone oxidoreductase 2 (NQO2) are an antioxidant enzyme, important in the detoxification of environmental carcinogens. Methylene-tetra-hydrofolate reductase (MTHFR), plays a role in folate metabolism and may have oncogenic role through disruption of normal DNA methylation pattern, synthesis, and impaired DNA repair. In a case-control study, genotyping was done in 195 PCa and 250 age matched unrelated healthy controls of similar ethnicity to determine variants in NQO1 exon 4 (C > T, rs4986998), exon 6 (C > T, rs1800566), NQO2 -3423 (G > A, rs2070999) and MTHFR exon 4 (C > T, rs1801133) by PCR-RFLP methods. Heterozygous genotype CT and variant allele career genotype (CT + TT) of NQO1 exon 4 showed increased risk of PCa (OR = 2.06, p = 0.033; OR = 2.02, p = 0.027). Variant allele T also revealed increased risk (OR = 1.87, p = 0.029). Similarly variant genotype TT (OR = 2.71, p = 0.009), combined genotype (CT + TT) (OR = 1.59, p = 0.019) and T allele (OR = 1.63, p = 0.002) of NQO1 exon 6 demonstrated significant risk for PCa. Diplotypes of NQO1 (exon 4 and 6), C-T (OR = 1.56, Pc = 0.007) and T-T (OR = 0.011, Pc = 3.86) was associated with an increased risk for PCa. NQO2 and MTHFR did not show any risk with PCa. Our results strongly support that common sequence variants and diplotypes of NQO1 exon 4 and 6 genes may have role in PCa risk in the North Indian population, indicating the importance of genes involved in metabolism with respect to PCa risk. Additional studies on larger populations are needed to clarify the role of variation in these genes in PCa carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.