In this research heavy metals, Cd and Pb, adsorption efficiency was evaluated in aqueous solutions using live and dead biomass of Pseudomonas aeruginosa bacteria. The various important parameters including; pH, temperature, Cd and Pb concentrations, contact time, live and dead cell mass were examined. First, the resistant P. aeruginosa to heavy metals identified and isolated from contaminated soil. Then, the Minimum Inhibitory Concentration (MIC) of Cd and Pb was determined for P. aeruginosa. The highest adsorption efficiency for Cd and Pb were 87% and 98.5%, under dead cell mass of 125 mg, pH 7, temperature 35 °C and contact time 90 min, respectively. The results of this study showed that P. aeruginosa have a high ability to adsorption of Cd and Pb in aqueous solutions.
In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.