Today’s world is characterised by competitive environments, optimal resource utilization, and cost reduction, which has resulted in an increasing role for metaheuristic algorithms in solving complex modern problems. As a result, this paper introduces the gold rush optimizer (GRO), a population-based metaheuristic algorithm that simulates how gold-seekers prospected for gold during the Gold Rush Era using three key concepts of gold prospecting: migration, collaboration, and panning. The GRO algorithm is compared to twelve well-known metaheuristic algorithms on 29 benchmark test cases to assess the proposed approach’s performance. For scientific evaluation, the Friedman and Wilcoxon signed-rank tests are used. In addition to these test cases, the GRO algorithm is evaluated using three real-world engineering problems. The results indicated that the proposed algorithm was more capable than other algorithms in proposing qualitative and competitive solutions.
Purpose As far as the authors know, no research has already been carried out on the multi-floor dynamic facility layout problem (MF-DFLP) in the continuous form regarding the flexible bay structure, the number and the variable location of the elevator. Therefore, the present paper models the given problem and attempts to find a sub-optimal solution for it using a meta-heuristic simulated annealing (SA) algorithm. Design/methodology/approach The efficient use of resources has always been a prominent matter for decision-makers. Many reasons including land use, construction considerations and proximity of departments have led to the design of multi-floor facilities. On the other hand, their fast-evolving environment calls for dynamic planning. Therefore, in this paper, a model and the SA algorithm for MF-DFLP are presented. Findings After presenting a mathematical model, the problem was solved precisely in a small size using the GAMS software. Also, a near-optimal solution method using a SA meta-heuristic algorithm is suggested and the proposed algorithm was run in the MATLAB software. To evaluate the presented model and the proposed solution, some test cases were considered in two aspects. The first aspect was the test cases that are newly generated in small, medium and large sizes to compare the exact optimal solution with the results of the meta-heuristic algorithm. Eight test cases with small sizes were solved using the GAMS software, the optimum solutions were obtained in a reasonable time, and the cost of their solutions was equal to that of the SA algorithm. Eight test cases with medium sizes were run in the GAMS software with the time limit of 80,000 s, and the SA algorithm had performed better for these test cases. Two test cases were also considered in large size that GAMS could not solve them, whereas the SA algorithm successfully found a proper solution for each. The second aspect included the test cases from the literature. The result showed that suggested algorithm is more capable of finding best solutions than compared algorithms. Originality/value In this paper, an unequal area MF-DFLP was studied in a continuous layout form in which the location and number of the elevators were considered to be variable, and the layouts were considered with flexible bay structure. These conditions were investigated for the first time.
In this paper, a memory-based simulated annealing algorithm called the Dual Memory Simulated Annealing Algorithm (DMSA) is presented to solve multi-line facility layout problems. The objective is to minimize the total material handling cost. Two memory buffers and a restart mechanism are considered. Two benchmark problems were selected from the literature review papers and solved using the standard simulated annealing (SA) algorithm and the DMSA. The obtained results show that solutions provided by the DMSA algorithm are cost-effective compared to the standard SA algorithm and the other algorithms used for solving these test cases. Moreover, to further evaluate the performance of the DMSA algorithm in large scale problems, eleven test cases were selected from the benchmark library of the quadratic assignment problem (QAP). According to the results, the performance of the algorithm in finding solutions to complex problems is exemplary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.