The COVID-19 is one of the worst pandemics in modern history. We applied principal component analysis (PCA) to the daily time series of the COVID-19 death cases and confirmed cases for the top 25 countries from April of 2020 to February of 2021. We calculated the eigenvalues and eigenvectors of the cross-correlation matrix of the changes in daily accumulated data over monthly time windows. The largest eigenvalue describes the overall evolution dynamics of the COVID-19 and indicates that evolution was faster in April of 2020 than in any other period. By using the first two PC coefficients, we can identify the group dynamics of the COVID-19 evolution. We observed groups under critical states in the loading plot and found that American and European countries are represented by strong clusters in the loading plot. The first PC plays an important role and the correlations (C1) between the normalized logarithmic changes in deaths or confirmed cases and the first PCs may be used as indicators of different phases of the COVID-19. By varying C1 over time, we identified different phases of the COVID-19 in the analyzed countries over the target time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.