In this paper, we establish some new results on the left-hand side of the q-Hermite-Hadamard inequality for differentiable convex functions with a critical point. Our work extends the results of Alp et. al (q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 2018, 30, 193-203), by considering the critical point-type inequalities.
In this paper, the Elzaki transform decomposition method is implemented to solve the time-fractional Swift–Hohenberg equations. The presented model is related to the temperature and thermal convection of fluid dynamics, which can also be used to explain the formation process in liquid surfaces bounded along a horizontally well-conducting boundary. In the Caputo manner, the fractional derivative is described. The suggested method is easy to implement and needs a small number of calculations. The validity of the presented method is confirmed from the numerical examples. Illustrative figures are used to derive and verify the supporting analytical schemes for fractional-order of the proposed problems. It has been confirmed that the proposed method can be easily extended for the solution of other linear and non-linear fractional-order partial differential equations.
<abstract><p>In this paper, we find the solution of the time-fractional Newell-Whitehead-Segel equation with the help of two different methods. The newell-Whitehead-Segel equation plays an efficient role in nonlinear systems, describing the stripe patterns' appearance in two-dimensional systems. Four case study problems of Newell-Whitehead-Segel are solved by the proposed methods with the aid of the Antagana-Baleanu fractional derivative operator and the Laplace transform. The numerical results obtained by suggested techniques are compared with an exact solution. To show the effectiveness of the proposed methods, we show exact and analytical results compared with the help of graphs and tables, which are in strong agreement with each other. Also, the results obtained by implementing the suggested methods at various fractional orders are compared, which confirms that the solution gets closer to the exact solution as the value tends from fractional-order towards integer order. Moreover, proposed methods are interesting, easy and highly accurate in solving various nonlinear fractional-order partial differential equations.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.