-Knowledge of the propagation media is a key step toward a successful transceiver design. Such information is typically gathered by conducting physical experiments, measuring and processing the corresponding data to obtain channel characteristics. In case of medical implants, this could be extremely difficult, if not impossible. In this paper, an immersive visualization environment is presented, which is used as a scientific instrument that gives us the ability to observe RF propagation from medical implants inside a human body. This virtual environment allows for more natural interaction between experts with different backgrounds, such as engineering and medical sciences. Here, we show how this platform has been used to determine a statistical path loss model for medical implant communication systems.
Information regarding the propagation media is typically gathered by conducting physical experiments, measuring and processing the corresponding data to obtain channel characteristics. When this propagation media is human body, for example in case of medical implants, then this approach might not be practical. In this paper, an immersive visualization environment is presented, which is used as a scientific instrument that gives us the ability to observe RF propagation from medical implants inside a human body. This virtual environment allows for more natural interaction between experts with different backgrounds, such as engineering and medical sciences. Here, we show how this platform has been used to determine channel models for medical implant communication systems.
Human body tissues have a strong effect on the antenna operation in wireless body area networks (WBANs). In this study, the authors present the deep investigations of the effect of body tissue thicknesses on the performance of an ultra wideband (UWB) loop antenna by simulations when the antenna is operated on contact with tissues. The planar UWB loop antenna is designed for the examinations, which is targeted to be used in UWB WBAN applications. The effect of tissue thicknesses on the antenna performance is analysed and characterised in the terms of reflection coefficient S11, gain and total antenna efficiency, group delay, radiation patterns and specific absorption rate by simulations. A parametric layered human body tissue model with the frequency‐dependent behaviour is exploited in the investigations. Further, the reflection coefficient of the presented antenna is measured in the different locations of the author's body. The main aim of these investigations is to demonstrate how the thickness of outermost body tissues affects the antenna performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.