This paper proposes a phase-reversal method (PRM) for damage imaging in plate structures. The PRM is a novel Lamb-wave-based method that mainly focuses on phase spectrum information of scattering waves reflected from a defect. The PRM reverses the phase angle along the propagation path by using the inverse Fourier transform first, and then the reversal reconstruction of the wave field in the frequency domain is performed for damage imaging. The proposed method analyzes the scattered wave field without using the baseline data and structural parameters. Moreover, dispersion characteristics and anisotropy are not involved in the process of damage positioning, thus making the PRM suitable for damage monitoring of composite laminates. To improve the PRM accuracy further, a combined addition and multiplication method of the correlation coefficient (CAMM) is proposed, which can reduce the effects of phase and noise artifacts and distortion. The results of the finite element simulations and experiments show that the combination of the PRM and CAMM methods can accurately locate damage in composite structures. Therefore, the PRM and CAMM methods have great application potential in damage imaging in composite laminates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.