The paper reports results on the design and analysis of the multivariable feedback H 1 robust system for plasma current, position and shape control in the fusion energy advanced tokamak (FEAT) developed in the International Thermonuclear Experimental Reactor (ITER) project. The system contains the fast loop with the SISO plasma vertical speed robust controller and the slow loop with the MIMO plasma current and shape robust controller. The goal is to study the resources of the system robustness to achieve a higher degree of the FEAT operation reliability. Two H 1 block diagonal controllers diagfK SISO ; K MIMO g were designed by a mixed sensitivity approach in the framework of the disturbance rejection configuration. These controllers were compared with block diagonal decoupling, PI and LQG controllers at the set of FEAT key scenario points according to the multiple-criterion: nominal performance at minor disruptions, robust stability and robust performance. The H 1 controllers showed larger multivariable stability margin and better nominal performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.