Anisotropic simplicial meshes are triangulations with elements elongated along prescribed directions. Anisotropic meshes have been shown well suited for interpolation of functions or solving PDEs. They can also significantly enhance the accuracy of a surface representation. Given a surface S endowed with a metric tensor field, we propose a new approach to generate an anisotropic mesh that approximates S with elements shaped according to the metric field. The algorithm relies on the well-established concepts of restricted Delaunay triangulation and Delaunay refinement and comes with theoretical guarantees. The star of each vertex in the output mesh is Delaunay for the metric attached to this vertex. Each facet has a good aspect ratio with respect to the metric specified at any of its vertices. The algorithm is easy to implement. It can mesh various types of surfaces like implicit surfaces, polyhedra, or isosurfaces in 3D images. It can handle complicated geometries and topologies, and very anisotropic metric fields.
The orbicular N -sided hole filling problem is usually introduced by filleting an end-point of a part with large radius. The existing methods based on quadrilateral partition or constrained-optimization can rarely generate high-order continuous blending surfaces under these circumstances. This paper first reparameterizes the boundary of the specified orbicular N -sided hole to ensure the compatibility of neighboring cross-boundary derivatives on the connecting points, preserving their G n continuity. Then we compute the control points of the periodic B-spline surface using the sufficient G n continuity condition on the pole and the algorithm of extending parametric surfaces. This method generates single blending surface, which can be converted into standard Bspline surface by adding knots without introducing errors. It only elevates the degree of the boundary by n. The construction method is simple and efficient, without iteration nor large-scale matrix solving. It achieves G n continuity under compatible conditions. The blending examples underline its feasibility and practicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.