Machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines without the need of human intervention. To support such a large number of autonomous devices, the M2M system architecture needs to be extremely power and spectrally efficient. This article thus briefly reviews the features of M2M services in the third generation (3G) long-term evolution and its advancement (LTE-Advanced) networks. Architectural enhancements are then presented for supporting M2M services in LTE-Advanced cellular networks. To increase spectral efficiency, the same spectrum is expected to be utilized for human-to-human (H2H) communications as well as M2M communications. We therefore present various radio resource allocation schemes and quantify their utility in LTE-Advanced cellular networks. System-level simulation results are provided to validate the performance effectiveness of M2M communications in LTE-Advanced cellular networks.
Abstract-The escalating teletraffic growth imposed by the proliferation of smartphones and tablet computers outstrips the capacity increase of wireless communications networks. Furthermore, it results in substantially increased carbon dioxide emissions. As a powerful countermeasure, in the case of full-rank channel matrices, MIMO techniques are potentially capable of linearly increasing the capacity or decreasing the transmit power upon commensurately increasing the number of antennas. Hence, the recent concept of large-scale MIMO (LS-MIMO) systems has attracted substantial research attention and been regarded as a promising technique for next-generation wireless communications networks. Therefore, this paper surveys the state of the art of LS-MIMO systems. First, we discuss the measurement and modeling of LS-MIMO channels. Then, some typical application scenarios are classified and analyzed. Key techniques of both the physical and network layers are also detailed. Finally, we conclude with a range of challenges and future research topics.Index Terms-Large-scale MIMO, 3-D MIMO, channel modeling, physical layer, networking.
Public healthcare has been paid an increasing attention given the exponential growth human population and medical expenses. It is well known that an effective health monitoring system can detect abnormalities of health conditions in time and make diagnoses according to the gleaned data. As a vital approach to diagnose heart diseases, ECG monitoring is widely studied and applied. However, nearly all existing portable ECG monitoring systems cannot work without a mobile application, which is responsible for data collection and display. In this paper, we propose a new method for ECG monitoring based on Internet-of-Things (IoT) techniques. ECG data are gathered using a wearable monitoring node and are transmitted directly to the IoT cloud using Wi-Fi. Both the HTTP and MQTT protocols are employed in the IoT cloud in order to provide visual and timely ECG data to users. Nearly all smart terminals with a web browser can acquire ECG data conveniently, which has greatly alleviated the cross-platform issue. Experiments are carried out on healthy volunteers in order to verify the reliability of the entire system. Experimental results reveal that the proposed system is reliable in collecting and displaying real-time ECG data, which can aid in the primary diagnosis of certain heart diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.