Summary Evidence is emerging that plant‐parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response.Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up‐regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild‐type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica.Yeast two‐hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species‐scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection.Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant–parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism.
Plant pathogen effectors can recruit the host post-translational machinery to mediate their post-translational modification (PTM) and regulate their activity to facilitate parasitism, but few studies have focused on this phenomenon in the field of plant-parasitic nematodes. In this study, we show that the plant-parasitic nematode Meloidogyne graminicola has evolved a novel effector, MgGPP, that is exclusively expressed within the nematode subventral esophageal gland cells and up-regulated in the early parasitic stage of M. graminicola. The effector MgGPP plays a role in nematode parasitism. Transgenic rice lines expressing MgGPP become significantly more susceptible to M. graminicola infection than wild-type control plants, and conversely, in planta, the silencing of MgGPP through RNAi technology substantially increases the resistance of rice to M. graminicola. Significantly, we show that MgGPP is secreted into host plants and targeted to the ER, where the N-glycosylation and C-terminal proteolysis of MgGPP occur. C-terminal proteolysis promotes MgGPP to leave the ER, after which it is transported to the nucleus. In addition, N-glycosylation of MgGPP is required for suppressing the host response. The research data provide an intriguing example of in planta glycosylation in concert with proteolysis of a pathogen effector, which depict a novel mechanism by which parasitic nematodes could subjugate plant immunity and promote parasitism and may present a promising target for developing new strategies against nematode infections.
Host-pathogen interactions are fundamental to our understanding of infectious diseases. Protein glycosylation is one kind of common post-translational modification, forming glycoproteins and modulating numerous important biological processes. It also occurs in host-pathogen interaction, affecting host resistance or pathogen virulence often because glycans regulate protein conformation, activity, and stability, etc. This review summarizes various roles of different glycoproteins during the interaction, which include: host glycoproteins prevent pathogens as barriers; pathogen glycoproteins promote pathogens to attack host proteins as weapons; pathogens glycosylate proteins of the host to enhance virulence; and hosts sense pathogen glycoproteins to induce resistance. In addition, this review also intends to summarize the roles of lectin (a class of protein entangled with glycoprotein) in host-pathogen interactions, including bacterial adhesins, viral lectins or host lectins. Although these studies show the importance of protein glycosylation in host-pathogen interaction, much remains to be discovered about the interaction mechanism.
Meloidogyne enterolobii is one of the most important plant-parasitic nematodes that can overcome the Mi-1 resistance gene and damage many economically important crops. Translationally controlled tumour protein (TCTP) is a multifunctional protein that exists in various eukaryotes and plays an important role in parasitism. In this study, a novel M. enterolobii TCTP effector, named MeTCTP, was identified and functionally characterized. MeTCTP was specifically expressed within the dorsal gland and was up-regulated during M. enterolobii parasitism. Transient expression of MeTCTP in protoplasts from tomato roots showed that MeTCTP was localized in the cytoplasm of the host cells. Transgenic Arabidopsis thaliana plants overexpressing MeTCTP were more susceptible to M. enterolobii infection than wild-type plants in a dose-dependent manner. By contrast, in planta RNA interference (RNAi) targeting MeTCTP suppressed the expression of MeTCTP in infecting nematodes and attenuated their parasitism. Furthermore, MeTCTP could suppress programmed cell death triggered by the pro-apoptotic protein BAX. These results demonstrate that MeTCTP is a novel plant-parasitic nematode effector that promotes parasitism, probably by suppressing programmed cell death in host plants.
Secretory effector proteins expressed within the esophageal glands of root-knot nematodes (Meloidogyne spp.) are thought to play key roles in nematode invasion of host roots and in formation of feeding sites necessary for nematodes to complete their life cycle. In this study, a novel effector protein gene designated as Mj-nulg1a, which is expressed specifically within the dorsal gland of Meloidogyne javanica, was isolated through suppression subtractive hybridization. Southern blotting and BLAST search analyses showed that Mj-nulg1a is unique for Meloidogyne spp. A real-time reverse-transcriptase polymerase chain reaction assay showed that expression of Mj-nulg1a was upregulated in parasitic second-stage juveniles and declined in later parasitic stages. MJ-NULG1a contains two putative nuclear localization signals and, consistently, in planta immunolocalization analysis showed that MJ-NULG1a was localized in the nuclei of giant cells during nematode parasitism. In planta RNA interference targeting Mj-nulg1a suppressed the expression of Mj-nulg1a in nematodes and attenuated parasitism ability of M. javanica. In contrast, transgenic Arabidopsis expressing Mj-nulg1a became more susceptible to M. javanica infection than wild-type control plants. These results depict a novel nematode effector that is targeted to giant cell nuclei and plays a critical role in M. javanica parasitism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.