Harvesting long-lived free triplets in high yields by utilizing organic singlet fission materials can be the cornerstone for increasing photovoltaic efficiencies potentially. However, except for polyacenes, which are the most studied systems in the singlet fission field, spin-entangled correlated triplet pairs and free triplets born through singlet fission are relatively poorly characterized. By utilizing transient absorption and photoluminescence spectroscopy in supramolecular aggregate thin films consisting of Hamilton-receptor-substituted diketopyrrolopyrrole derivatives, we show that photoexcitation gives rise to the formation of spin-0 correlated triplet pair 1(TT) from the lower Frenkel exciton state. The existence of 1(TT) is proved through faint Herzberg-Teller emission that is enabled by vibronic coupling and correlated with an artifact-free triplet-state photoinduced absorption in the near-infrared. Surprisingly, transient electron paramagnetic resonance reveals that long-lived triplets are produced through classical intersystem crossing instead of 1(TT) dissociation, with the two pathways in competition. Moreover, comparison of the triplet-formation dynamics in J-like and H-like thin films with the same energetics reveals that spin-orbit coupling mediated intersystem crossing persists in both. However, 1(TT) only forms in the J-like film, pinpointing the huge impact of intermolecular coupling geometry on singlet fission dynamics.
Diketopyrrolopyrrole (DPP)-based molecular semiconductors exhibit intriguing optical and charge transport properties. Herein, we rationally design a series of electronically identical but structurally distinct Hamilton receptor (HR)-based supramolecular assembly of DPP. The HR endows supramolecular assemblies via hydrogen bonding with enhanced structural ordering and excitonic couplings. The mechanism of supramolecular self-assembly was probed by diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) and solid-state IR spectroscopy studies. We investigated the morphology of self-assembly, photophysical and electrochemical properties and compared them with the identical DPP molecular structures without HRs. The microstructure of self-assembly was probed with atomic force microscopy in thin films. Subsequently, the influence of solid-state packing was studied by single-crystal X-ray diffraction. The single-crystal structure of HR-TDPP-C 20 reveals slipped stack arrangements between the two neighboring chromophores with π–π stacking distance and slip angle of 3.55 Å and 35.4°, respectively. Notably, the slight torsional angle of 1° between thiophene and lactam rings and small π–π stacking distance suggest a significant intermolecular coupling between thiophene (D) and lactam (A) rings. This intramolecular coupling between two π–π chromophore stacks manifests in their optical properties. In this manuscript, we report rational design and synthesis of supramolecular self-assembly of DPP with a collection of compelling structural and optical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.