Pyoderma gangrenosum (PG) is a rare neutrophilic dermatosis characterized by painful, necrotic ulceration. It typically affects patients in the third to sixth decades of life, with almost equal incidence in men and women. PG occurs most frequently on the lower extremities. Five clinical variants are currently recognized: classic, bullous, pustular, vegetative, and peristomal types. Half of PG cases are seen in association with systemic disease. Mimickers include infection, vascular insufficiency ulcers, systemic vasculitides, autoimmune disease, cancer, and exogenous tissue injury, among others. PG is often a diagnosis of exclusion, as there are no specific laboratory or histopathologic findings to confirm the diagnosis. PG thus presents many clinical challenges: it is difficult to diagnose, is frequently misdiagnosed, and often requires a work-up for underlying systemic disease. Successful management of PG typically requires multiple modalities to reduce inflammation and optimize wound healing, in addition to treatment of any underlying diseases. Prednisone and cyclosporine have been mainstays of systemic treatment for PG, although increasing evidence supports the use of biologic therapies, such as tumor necrosis factor-α inhibitors, for refractory cases of PG. Here, we review the clinical presentation and pathophysiology of PG, as well as its associated conditions, diagnostic work-up, and management.
Effector T cells mediate adaptive immunity and immunopathology, but methods for tracking such cells in vivo are limited. We engineered knockin mice expressing IL-4 linked via a viral IRES element with enhanced green fluorescent protein (EGFP). Reporter T cells primed under Th2 conditions showed sensitive and faithful EGFP expression and maintained endogenous IL-4. After Nippostrongylus infection, reporter expression demonstrated the evolution of type 2 immunity from tissue lymphocytes and thence to lymph node CD4(+) T cells, which subsequently migrated into tissue. The appearance of EGFP(+) CD4(+) T cells in tissue, but not in lymph nodes, was Stat6-dependent. Transferred EGFP(+) CD4(+) T cells from infected animals conferred protection against Nippostrongylus to immunodeficient mice. These mice will provide a valuable reagent for assessing immunity in vivo.
Using IL-4 reporter mice we identified eosinophils, basophils, and Th2 cells as the three IL-4-producing cell types that appear in the lungs of mice infected with the migrating intestinal helminth, Nippostrongylus brasiliensis. Eosinophils were most prevalent, peaking by approximately 1000-fold on day 9 after infection, with Th2 cells and basophils at 3- and 10-fold lower numbers, respectively. Eosinophil and basophil expansion in blood in response to parasites and their capacity for IL-4 expression required neither Stat6 nor T cells. Th2 induction and expansion in draining lymph nodes was also Stat6 independent. In contrast, eosinophil (and Th2 cell) recruitment to the lung was dependent on Stat6 expression by a bone marrow-derived tissue resident cell, whereas basophil recruitment was Stat6 and IL-4/IL-13 independent but T cell dependent. Primary type 2 immune responses in the lung represent the focal recruitment and activation of discrete cell populations from the blood that have previously committed to express IL-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.