Microalgae have been considered as a potential candidate for biodiesel feedstock. Single-stage simultaneous extraction–transesterification process is proposed for simpler and more effective biodiesel conversion. In this study, the experiment of biodiesel production from microalgae Spirulina sp. was performed in a batch-stirred reactor using palm oil as a co-solvent of methanol and catalyzed by potassium hydroxide at a percentage of 1 wt% (w/w of palm oil). The effects of methanol–palm oil molar ratio, palm oil–microalgae weight ratio, and temperature on biodiesel yield were investigated. The results showed that the best biodiesel yield was 85.28% (99.01% of partial biodiesel yield from palm oil and 16.69% of partial biodiesel yield from dry microalgae), obtained at a methanol–palm oil molar ratio of 10:1, a palm oil–microalgae weight ratio of 5:1, and at a temperature of 60°C. Upon comparison, the overall yield increased by 34.59% (37.73% of partial biodiesel yield from palm oil and 13.00% of partial biodiesel yield from dry microalgae) than that of the two-stage (conventional) method. Single-stage simultaneous extraction–transesterification process also reduced the number of unsaturated fatty acid components in biodiesel that will lower the biodiesel quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.