Positron emission tomography (PET) is an effective tool for noninvasive examination of the body and provides a range of functional information. PET imaging with [(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) has been used to image alterations in glucose metabolism in brain or cancer tissue in the field of clinical diagnosis but not in the field of toxicology. A single dose of N-methyl-d-aspartate (NMDA) receptor antagonist induces neuronal cell degeneration/death in the rat retrosplenial/posterior cingulate (RS/PC) cortex region. These antagonists also increase local cerebral glucose utilization. Here, we examined the potential of [(18)F]FDG-PET as an imaging biomarker of neurotoxicity induced by an NMDA receptor antagonist, MK-801. Using [(18)F]FDG-PET, we determined that increased glucose utilization involved the neurotoxicity induced by MK-801. The accumulation of [(18)F]FDG was increased in the rat RS/PC cortex region showing neuronal cell degeneration/death and detected before the onset of neuronal cell death. This effect increased at a dose level at which neuronal cell degeneration recovered 24h after MK-801 administration. Scopolamine prevented the neurotoxicity and [(18)F]FDG accumulation induced by MK-801. Furthermore, in cynomolgus monkeys that showed no neuronal cell degeneration/death when treated with MK-801, we noted no differences in [(18)F]FDG accumulation between test and control subjects in any region of the brain. These findings suggest that [(18)F]FDG-PET, which is available for clinical trials, may be useful in generating a predictive imaging biomarker for detecting neurotoxicity against NMDA receptor antagonists with the same pharmacological activity as MK-801.
Single treatment of rats with the noncompetitive N-methyl-D-aspartate receptor antagonist MK-801 induces neuronal cell degeneration and death in the retrosplenial/posterior cingulate cortex (RS/PC) region, along with local cerebral glucose utilization. However, the relationship between this neuronal cell degeneration and death and glucose utilization remains unclear. To investigate the mechanism of MK-801-induced neurotoxicity and its relation to glucose utilization, changes in endogenous metabolites in the RS/PC region of MK-801 treated rats were assessed using metabolomics. Inverse correlation between citrulline and arginine levels suggested increased nitric oxide (NO) production. In addition, decreased levels of purine metabolites suggested enhanced xanthine oxidase activity accompanied with reactive oxygen species (ROS) production. Histopathological analysis confirmed that the production of ROS in the RS/PC region was increased by MK-801 and that the nonspecific NO synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) prevented MK-801-induced neuronal cell death. These results suggest that NO increases oxidative stress-related cell death. Increased levels of metabolites of glucose metabolism suggested enhanced energy production via glycolysis. To confirm the relationship between NO and glucose utilization, positron emission tomography (PET) imaging with [(18)F] fluoro-2-deoxy-d-glucose ([(18)F] FDG) was conducted. [(18)F] FDG-PET imaging accompanied by co-treatment of L-NAME with MK-801 demonstrated that L-NAME ameliorated MK-801-induced glucose utilization.In conclusion, MK-801 induces NO and ROS production in the RS/PC region, which might subsequently induce oxidative stress and in turn neuronal cell death. In addition, MK-801-induced NO production increased glucose utilization and affected glucose metabolism, the imbalance of which might generate additional oxidative stress related to neuronal cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.