Purpose: LYRIC/AEG-1 has been reported to influence breast cancer survival and metastases, and its altered expression has been found in a number of cancers. The cellular function of LYRIC/ AEG-1has previously been related to its subcellular distribution in cell lines. LYRIC/AEG-1contains three uncharacterized nuclear localization signals (NLS), which may regulate its distribution and, ultimately, function in cells. Experimental Design: Immunohistochemistry of a human prostate tissue microarray composed of 179 prostate cancer and 24 benign samples was used to assess LYRIC/AEG-1 distribution. Green fluorescent protein-NLS fusion proteins and deletion constructs were used to show the ability of LYRIC/AEG-1NLS to target green fluorescent protein from the cytoplasm to the nucleus. Immunoprecipitation and Western blotting were used to show posttranslational modification of LYRIC/AEG-1NLS regions. Results: Using a prostate tissue microarray, significant changes in the distribution of LYRIC/ AEG-1 were observed in prostate cancer as an increased cytoplasmic distribution in tumors compared with benign tissue. These differences were most marked in high grade and aggressive prostate cancers and were associated with decreased survival. The COOH-terminal extended NLS-3 (amino acids 546-582) is the predominant regulator of nuclear localization, whereas extended NLS-1 (amino acids 78-130) regulates its nucleolar localization. Within the extended NLS-2 region (amino acids 415-486), LYRIC/AEG-1 can be modified by ubiquitin almost exclusively within the cytoplasm. Conclusions: Changes in LYRIC/AEG-1 subcellular distribution can predict Gleason grade and survival. Two lysine-rich regions (NLS-1 and NLS-3) can target LYRIC/AEG-1 to subcellular compartments whereas NLS-2 is modified by ubiquitin in the cytoplasm.
The androgen receptor (AR) is a key molecule involved in prostate cancer (PC) development and progression. Post-translational modification of the AR by co-regulator proteins can modulate its transcriptional activity. To identify which demethylases might be involved in AR regulation, an siRNA screen was performed to reveal that the demethylase, KDM4B, may be an important co-regulator protein. KDM4B enzymatic activity is required to enhance AR transcriptional activity; however, independently of this activity, KDM4B can enhance AR protein stability via inhibition of AR ubiquitination. Importantly, knockdown of KDM4B in multiple cell lines results in almost complete depletion of AR protein levels. For the first time, we have identified KDM4B to be an androgen-regulated demethylase enzyme, which can influence AR transcriptional activity not only via demethylation activity but also via modulation of ubiquitination. Together, these findings demonstrate the close functional relationship between AR and KDM4B, which work together to amplify the androgen response. Furthermore, KDM4B expression in clinical PC specimens positively correlates with increasing cancer grade (P < 0.001). Consequently, KDM4B is a viable therapeutic target in PC.
Fibroblast growth factor receptors (FGFRs) mediate the tumourigenic effects of FGFs in prostate cancer. These receptors are therefore potential therapeutic targets in the development of inhibitors to this pathway. To identify the most relevant targets, we simultaneously investigated FGFR1-4 expression using a prostate cancer tissue microarray (TMA) and in laser capture microdissected (LCM) prostate epithelial cells. In malignant prostates (n = 138) we observed significant FGFR1 and FGFR4 protein over-expression in comparison with benign prostates (n = 58; p < 0.0001). FGFR1 was expressed at high levels in the majority of tumours (69% of grade 3 or less, 74% of grade 4 and 70% of grade 5), while FGFR4 was strongly expressed in 83% of grade 5 cancers but in only 25% of grade 1-3 cancers (p < 0.0001). At the transcript level we observed a similar pattern, with FGFR1 and FGFR4 mRNA over-expressed in malignant epithelial cells compared to benign cells (p < 0.0005 and p < 0.05, respectively). While total FGFR2 was increased in some cancers, there was no association between expression and tumour grade or stage. Transcript analysis, however, revealed a switch in the predominant isoform expressed from FGFR2IIIb to FGFR2IIIc among malignant epithelial cells. In contrast, protein and transcript expression of FGFR3 was very similar between benign and cancer biopsies. The functional effect of targeting FGFR4 in prostate cancer cells has not previously been investigated. In in vitro experiments, suppression of FGFR4 by RNA interference effectively blocked prostate cancer cell proliferation (p < 0.0001) and invasion (p < 0.001) in response to exogenous stimulation. This effect was evident regardless of whether the cells expressed the FGFR4 Arg388 or Gly388 allele. In parallel experiments, FGFR3 suppression had no discernible effect on cancer cell behaviour. These results suggest evidence of selective over-expression of FGFR1 and FGFR4 in clinical prostate cancer and support the notion of targeted inhibition of these receptors to disrupt FGF signalling.
Fibroblast growth factors (FGF), and in particular FGF8, have been strongly implicated in prostate carcinogenesis. This study investigated the expression of Sef, a key inhibitory regulator of FGF signalling, in prostate cancer. In a panel of cell lines, hSef was detected in both androgen-dependent and independent cells but was significantly reduced in highly metastatic derivative clones. hSef expression was not influenced by androgenic stimulation. Forced downregulation of hSef by siRNA increased FGF8b induced cell migration (P ¼ 0.02) and invasion (P ¼ 0.007). Reduced hSef levels also enhanced FGF8b stimulated expression of MMP9 (P ¼ 0.005). mRNA in situ hybridization revealed hSef expression in 80% (8/10) of benign biopsies but in only 69% (23/33) of Gleason sum 4-7 and 35% (10/28) of Gleason sum 8-10 cancer biopsies (P ¼ 0.004). Quantitative PCR of microdissected glands confirmed this trend (P ¼ 0.001). hSef was expressed in 69% (27/39) of non-metastatic tumours but in only 18% (2/11) of metastatic tumours (P ¼ 0.004, n ¼ 50). hSef expression was next correlated with earlier data on FGF8b expression in a subgroup of cancers. In this cohort, 86% (19/22) of high-grade cancers expressed FGF8 but only 31% (7/22) expressed hSef. Positive FGF8 expression but a loss of hSef was observed in 88% (7/8) of metastatic tumours. In contrast, metastasis was evident in only 10% (1/10) of tumours, which co-expressed both FGF8 and hSef (Po0.001). These results suggest evidence that hSef is downregulated in advanced prostate cancer and might facilitate an enhanced tumorigenic response to FGFs. Further research into the role of hSef in cancer cell signalling and the mechanism of its downregulation may contribute to more effective targeting of growth factors in prostate cancer.
Loss of SPRY2 and activation of receptor tyrosine kinases are common events in prostate cancer (PC). However, the molecular basis of their interaction and clinical impact remains to be fully examined. SPRY2 loss may functionally synergize with aberrant cellular signalling to drive PC and to promote treatment-resistant disease. Here, we report evidence for a positive feedback regulation of the ErbB-PI3K/AKT cascade by SPRY2 loss in in vitro as well as pre-clinical in vivo models and clinical PC. Reduction in SPRY2 expression resulted in hyper-activation of PI3K/AKT signalling to drive proliferation and invasion by enhanced internalization of EGFR/HER2 and their sustained signalling at the early endosome in a PTEN-dependent manner. This involved p38 MAPK activation by PI3K to facilitate clathrin-mediated ErbB receptor endocytosis. Finally, in vitro and in vivo inhibition of PI3K suppressed proliferation and invasion, supporting PI3K/AKT as a target for therapy particularly in patients with PTEN-haploinsufficient-, low SPRY2- and ErbB-expressing tumours. In conclusion, SPRY2 is an important tumour suppressor in PC since its loss drives the PI3K/AKT pathway via functional interaction with the ErbB system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.