Homology modeling is one of the key discoveries that led to a rapid paradigm shift in the field of computational biology. Homology modeling obtains the three dimensional structure of a target protein based on the similarity between template and target sequences and this technique proves to be efficient when it comes to studying membrane proteins that are hard to crystallize like GPCR as it provides a higher degree of understanding of receptor-ligand interaction. We get profound insights on structurally unsolved, yet clinically important drug targeting proteins through single or multiple template modeling. The advantages of homology modeling studies are often used to overcome various problems in crystallizing GPCR proteins that are involved in major disease-related pathways, thus paving way to more structural insights via in silico models when there is a lack of experimentally solved structures. Owing to their pharmaceutical significance, structural analysis of various GPCR proteins using techniques like homology modeling is of utmost importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.