SummaryBackgroundInfluenza causes significant morbidity and mortality despite currently available treatments. Anecdotal reports suggest plasma with high antibody titers towards influenza may be of benefit in the treatment of severe influenza.MethodsWe conducted a randomized, open-label, multicenter phase 2 trial at 29 academic medical centers in the United States to assess the safety and efficacy of anti-influenza plasma with hemagglutination inhibition (HAI) antibody titers of ≥ 1:80 to the infecting strain. Hospitalized children and adults (including pregnant women) with severe influenza A or B (defined as hypoxia or tachypnea) were randomly assigned to receive either 2 units (or pediatric equivalent) of anti-influenza plasma plus standard care (P+S), versus standard care alone (S), and were followed for 28 days. The primary endpoint was time to normalization of patients’ respiratory status (respiratory rate of ≤ 20 for adults or age defined thresholds of 20–38 for children), and a room air saturation of oxygen ≥ 93%. ClinicalTrials.gov Identifier: NCT01052480FindingsBetween January 13, 2011 and March 2, 2015, 113 participants were screened, and 98 were randomized. Of the participants with confirmed influenza, 28 of 42 (67%) of P+S participants normalized their respiratory status by Day 28, as compared to 24 of 45 (53%) of S participants (p=0·069). The estimated hazard ratio comparing P+S to S was 1·71 (95% CI: 0·96 to 3·06). Six participants died, 1 (2%) and 5 (10%) from the P+S and S arms respectively (p=0·093). P+S participants had non-significant reductions in days in hospital (median 6 vs. 11 days, p=0·13) and days on mechanical ventilation (median 0 vs. 3 days, p=0·14), and significantly improved clinical status at Day 7 (p=0·020). Fewer P+S participants experienced SAEs compared to S recipients (20% vs. 38%, p= 0·041), the most frequent of which were acute respiratory distress syndrome (1 [2%] vs 2 [4%]) and stroke (1 [2%] vs 2 [4%]).InterpretationResults from this Phase II randomized trial of immune plasma for the treatment of severe influenza provides support for a possible benefit of immunotherapy across the primary and secondary endpoints. A Phase III randomized trial is now underway to further evaluate this intervention.
As of 13 November 2015, 1618 laboratory-confirmed human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, including 579 deaths, had been reported to the World Health Organization. No specific preventive or therapeutic agent of proven value against MERS-CoV is currently available. Public Health England and the International Severe Acute Respiratory and Emerging Infection Consortium identified passive immunotherapy with neutralizing antibodies as a treatment approach that warrants priority study. Two experimental MERS-CoV vaccines were used to vaccinate two groups of transchromosomic (Tc) bovines that were genetically modified to produce large quantities of fully human polyclonal immunoglobulin G (IgG) antibodies. Vaccination with a clade A g-irradiated whole killed virion vaccine (Jordan strain) or a clade B spike protein nanoparticle vaccine (Al-Hasa strain) resulted in Tc bovine sera with high enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody titers in vitro. Two purified Tc bovine human IgG immunoglobulins (Tc hIgG), SAB-300 (produced after Jordan strain vaccination) and SAB-301 (produced after Al-Hasa strain vaccination), also had high ELISA and neutralizing antibody titers without antibody-dependent enhancement in vitro. SAB-301 was selected for in vivo and preclinical studies. Administration of single doses of SAB-301 12 hours before or 24 and 48 hours after MERS-CoV infection (Erasmus Medical Center 2012 strain) of Ad5-hDPP4 receptor-transduced mice rapidly resulted in viral lung titers near or below the limit of detection. Tc bovines, combined with the ability to quickly produce Tc hIgG and develop in vitro assays and animal model(s), potentially offer a platform to rapidly produce a therapeutic to prevent and/or treat MERSCoV infection and/or other emerging infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.