Early-life deficiency of the serotonin transporter (SERT) gives rise to a wide range of psychiatric-relevant phenotypes; however, the molecular and cellular targets of serotonin dyregulation during neural circuit formation remain to be identified. Interestingly, migrating cortical interneurons (INs) derived from the caudal ganglionic eminence (CGE) have been shown to be more responsive to serotonin-mediated signalling compared with INs derived from the medial ganglionic eminence (MGE). Here we investigated the impact of early-life SERT deficiency on the migration and positioning of CGE-derived cortical INs in SERT-ko mice and in mice exposed to the SERT inhibitor fluoxetine during the late embryonic period. Using confocal time-lapse imaging and microarray-based expression analysis we found that genetic and pharmacological SERT deficiency significantly increased the migratory speed of CGE-derived INs and affected transcriptional programmes regulating neuronal migration. Postnatal studies revealed that SERT deficiency altered the cortical laminar distribution of subtypes of CGE-derived INs but not MGE-derived INs. More specifically, we found that the distribution of vasointestinal peptide (VIP)-expressing INs in layer 2/3 was abnormal in both genetic and pharmacological SERT-deficiency models. Collectively, these data indicate that early-life SERT deficiency has an impact on the migration and molecular programmes of CGE-derived INs, thus leading to specific alterations in the positioning of VIP-expressing INs. These data add to the growing evidence that early-life serotonin dysregulation affects cortical microcircuit formation and contributes to the emergence of psychiatric-relevant phenotypes.
The in vivo firing patterns of ventral midbrain dopamine neurons are controlled by afferent and intrinsic activity to generate sensory cue and prediction error signals that are essential for reward-based learning. Given the absence of in vivo intracellular recordings during the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. To address this, we established in vivo whole-cell recordings and obtained over 100 spontaneously active, immunocytochemically-defined midbrain dopamine neurons in isoflurane-anaesthetized adult mice. We identified a repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. Dopamine neuron activity in vivo deviated from single-spike pacemaking by phasic increases in firing rate via two qualitatively distinct biophysical mechanisms: 1) a prolonged hyperpolarization preceding rebound bursts, accompanied by a hyperpolarizing shift in action potential threshold; and 2) a transient depolarization leading to high-frequency plateau bursts, associated with a depolarizing shift in action potential threshold. Our findings define a mechanistic framework for the biophysical implementation of dopamine neuron firing patterns in the intact brain.
The firing pattern of ventral midbrain dopamine neurons is controlled by afferent and intrinsic activity to generate prediction error signals that are essential for reward-based learning. Given the absence of intracellular in vivo recordings in the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. By establishing stable in vivo whole-cell recordings of >100 spontaneously active midbrain dopamine neurons in anaesthetized mice, we identified the repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. We demonstrate that in vivo activity of dopamine neurons deviates from a single spike pacemaker pattern by eliciting transient increases in firing rate generated by at least two diametrically opposing biophysical mechanisms: a transient depolarization resulting in high frequency plateau bursts associated with a reactive depolarizing shift in action potential threshold, and a prolonged hyperpolarization preceding slower rebound bursts characterized by a predictive hyperpolarizing shift in action potential threshold. Our findings therefore illustrate a framework for the biophysical implementation of prediction error coding in dopamine neurons by tuning action potential threshold dynamics.
Dopamine is a key neurotransmitter that serves several essential functions in daily behaviors such as locomotion, motivation, stimulus coding, and learning. Disrupted dopamine circuits can result in altered functions of these behaviors which can lead to motor and psychiatric symptoms and diseases. In the central nervous system, dopamine is primarily released by dopamine neurons located in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) within the midbrain, where they signal behaviorally-relevant information to downstream structures by altering their firing patterns. Their “pacemaker” firing maintains baseline dopamine levels at projection sites, whereas phasic “burst” firing transiently elevates dopamine concentrations. Firing activity of dopamine neurons projecting to different brain regions controls the activation of distinct dopamine pathways and circuits. Therefore, characterization of how distinct firing patterns are generated in dopamine neuron populations will be necessary to further advance our understanding of dopamine circuits that encode environmental information and facilitate a behavior. However, there is currently a large gap in the knowledge of biophysical mechanisms of phasic firing in dopamine neurons, as spontaneous burst firing is only observed in the intact brain, where access to intrinsic neuronal activity remains a challenge. So far, a series of highly-influential studies published in the 1980s by Grace and Bunney is the only available source of information on the intrinsic activity of midbrain dopamine neurons in vivo, in which sharp electrodes were used to penetrate dopamine neurons to record their intracellular activity. A novel approach is thus needed to fill in the gap. In vivo whole-cell patch-clamp method is a tool that enables access to a neuron’s intrinsic activity and subthreshold membrane potential dynamics in the intact brain. It has been used to record from neurons in superficial brain regions such as the cortex and hippocampus, and more recently in deeper regions such as the amygdala and brainstem, but has not yet been performed on midbrain dopamine neurons. Thus, the deep brain in vivo patch-clamp recording method was established in the lab in an attempt to investigate the subthreshold membrane potential dynamics of tonic and phasic firing in dopamine neurons in vivo. The use of this method allowed the first in-depth examination of burst firing and its subthreshold membrane potential activity of in vivo midbrain dopamine neurons, which illuminated that firing activity and subthreshold membrane activity of dopamine neurons are very closely related. Furthermore, systematic characterization of subthreshold membrane patterns revealed that tonic and phasic firing patterns of in vivo dopamine neurons can be classified based on three distinct subthreshold membrane signatures: 1) tonic firing, characterized by stable, non-fluctuating subthreshold membrane potentials; 2) rebound bursting, characterized by prominent hyperpolarizations that initiate bursting; and 3) plateau bursting, characterized by transient, depolarized plateaus on which bursting terminates. The results thus demonstrated that different types of phasic firing are driven by distinct patterns of subthreshold membrane activity, which may potentially signal distinct types of information. Taken together, the deep brain in vivo patch-clamp technique can be used for the investigation of firing mechanisms of dopamine neurons in the intact brain and will help address open questions in the dopamine field, particularly regarding the biophysical mechanisms of burst firing in dopamine neurons that control behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.