To investigate the mechanism of the regulation of human red blood cell deformability, we examined the deformability under mechanical stress. Washed human red blood cells were rapidly injected through a fine needle, and their filterability was measured using a nickel mesh filter. The decrease in filterability showed a V-shaped curve depending on the extracellular Ca2+ concentration; the maximum decrease was achieved at ∼50 μM. The decreased filterability was accompanied by no change in cell morphology and cell volume, indicating that the decrease in filterability can be ascribed to alterations of the membrane properties. Ca2+entry blockers (nifedipine and felodipine) inhibited the impairment of filterability under mechanical stress. Prostaglandins E1 and E2, epinephrine, and pentoxifylline, which are thought to modulate the intracellular adenosine 3′,5′-cyclic monophosphate (cAMP) level of red blood cells, improved or worsened the impaired filterability according to their expected actions on the cAMP level of the cells. These results strongly suggest that the membrane properties regulating red blood cell deformability are affected by the signal transduction system, including Ca2+-dependent and cAMP-mediated signaling pathways.
We previously showed that the deformability of human red blood cells (RBCs) is affected by intracellular signaling pathways by examining the effects of Ca2+ influx and the intracellular cAMP level on mechanically-impaired RBC filterability. In the present study, we investigated whether protein kinase C (PKC) participates in the regulation of RBC deformability by affecting membrane properties. The filterability of mechanically-stressed RBCs showed a V-shaped curve depending on the extracellular Ca2+ concentration; the maximum decrease was achieved at 20-40 microM. The PKC activity, as measured in the membrane-rich fraction by an ELISA method using an antibody for the phosphorylated PKC substrate, maximally increased at the extracellular Ca2+ concentration where the filterability showed a marked improvement following the bottom of the V-shaped curve of the impaired filterability. At this Ca2+ concentration, the PKC activator endothelin-1 increased the PKC activity, and a PKC inhibitor (calphostin C) decreased it. Endothelin-1 improved and calphostin C worsened the impaired filterability. A specific type-B endothelin receptor agonist (IRL 1620) also improved the impaired filterability. A Western blot analysis revealed the presence of endothelin receptors in the RBC membrane. These results indicate that PKC improves the impaired filterability and that RBCs are the target of endothelin-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.