Influenza virus RNA-dependent RNA polymerase is a multi-functional heterotrimer, which uses a 'cap-snatching' mechanism to produce viral mRNA. Host cell mRNA is cleaved to yield a cap-bearing oligonucleotide, which can be extended using viral genomic RNA as a template. The cap-binding and endonuclease activities are only activated once viral genomic RNA is bound. This requires signalling from the RNA-binding PB1 subunit to the cap-binding PB2 subunit, and the interface between these two subunits is essential for the polymerase activity. We have defined this interaction surface by protein crystallography and tested the effects of mutating contact residues on the function of the holo-enzyme. This novel interface is surprisingly small, yet, it has a crucial function in regulating the 250 kDa polymerase complex and is completely conserved among avian and human influenza viruses.
Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit.optogenetics | X-ray crystallography | blue light | allostery
SUMMARY1. The effects of some divalent cations on the A-current (IA) in cultured rat dorsal root ganglion cells (DRGs) were studied using whole-cell patch recording.2. IA was not affected by omission of calcium from the external medium; however it was significantly depressed by manganese (10 mm) applied by pressure ejection. This depressant effect of manganese resulted from a depolarizing shift of the activation curve by 17 mV, associated with only a slight reduction of the maximum conductance. At 10 mm manganese also caused a depolarizing shift of the steadystate inactivation curve by 34 mV. Divalent cations other than manganese also gave positive shifts of the steady-state activation and inactivation curves for IA but were of different potency; the sequence was: Cd2+ > Mn2+ = Co2+ > Ca2+ > Mg2+. 4. In contrast to its effect on IA' manganese (10 mM) did not cause any appreciable change in the voltage dependence of the activation curve for the delayed rectifier K+ current. 5. A low concentration of manganese (1 mM) increased the amplitude Of IA recorded at pre-pulse potentials ranging from -50 to -70 mV. This augmentation of IA resulted from a positive shift of the inactivation curve by 6 mV without an appreciable shift of the activation curve; as a result a population of A-channels is released from inactivation over pre-pulse potentials from -50 to -70 mV.6. These results show that divalent cations can evoke a depolarizing shift of both the activation and inactivation gates controlling IA; this causes either depression or augmentation of IA, depending on the species and concentration of the divalent cation, and also on the pre-pulse potential used to de-inactivate IA. This modulatory effect of divalent cations on the gating Of IA appears to reflect binding to a specific, saturable site, either the A-channel protein itself, or phospholipids electrically close to the gating apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.