Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as “Uncharacterized.” Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.
Brucellosis is a zoonotic disease caused mainly by the bacteria belonging to the genus Brucella, most common of them is Brucella abortus. Genome sequencing of Brucella was completed in 2005. While majority of the proteins were assigned function, a large number of the peptides remained un-annotated and were referred as 'hypothetical'. These hypothetical proteins may contain crucial information about the biology and pathogenesis of the B. abortus. Therefore, it is of interest to annotate one such hypothetical protein as a multiple antibiotic resistance regulator protein, MarR. The physiological parameters, localization and the structural features were predicted for this protein which corroborated as the winged-helix type DNA-binding domain superfamily of transcription factors.
Wuchereria bancrofti and Brugia malayi are the filarial worms belonging to phylum Nematoda and cause lymphatic filariasis (LF) disease in humans. W. bancrofti and B. malayi are Wolbachia dependent organisms while C. elegans is free living Wolbachia independent nematode. In order to investigate the conserved regions present in the mitochondrial genome of these organisms, the complete mitochondrial (mt) genomes of W. bancrofti and B. malayi having size 13,636 bp and 13,657 bp in length, respectively are compared with C. elegans (13794 bp). These mt genomes were similar to each other in respect of their size, AT content and encode the same 12 PCGs (nad1–6, nad4L, cytb, cox1–3, and atp6). Complete mt genome alignment identified 13 conserved regions in each of the organisms with some of these regions unique only to one organism. Phylogenetic analysis using the mt genome showed a close relationship between W. bancrofti and B. malayi but showed a common early ancestor with the C. elegans emphasizing an early evolutionary divergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.