The reaction catalyzed by E. coli ribonucleotide reductase (RNR) composed of α and β subunits that form an active α2β2 complex is a paradigm for proton-coupled electron transfer (PCET) processes in biological transformations. β2 contains the diferric tyrosyl radical (Y·) cofactor that initiates radical transfer (RT) over 35 Å via a specific pathway of amino acids (Y· ⇆ [W] ⇆ Y in β2 to Y ⇆ Y ⇆ C in α2). Experimental evidence exists for colinear and orthogonal PCET in α2 and β2, respectively. No mechanistic model yet exists for the PCET across the subunit (α/β) interface. Here, we report unique EPR spectroscopic features of Y·-β, the pathway intermediate generated by the reaction of 2,3,5-FY·-β2/CDP/ATP with wt-α2, YF-α2, or YF-α2. High field EPR (94 and 263 GHz) reveals a dramatically perturbed g tensor. [H] and [H]-ENDOR reveal two exchangeable H bonds to Y·: a moderate one almost in-plane with the π-system and a weak one. DFT calculation on small models of Y· indicates that two in-plane, moderate H bonds (r ∼1.8-1.9 Å) are required to reproduce the g value of Y· (wt-α2). The results are consistent with a model, in which a cluster of two, almost symmetrically oriented, water molecules provide the two moderate H bonds to Y· that likely form a hydrogen bond network of water molecules involved in either the reversible PCET across the subunit interface or in H release to the solvent during Y oxidation.
Escherichia coli class Ia ribonucleotide reductase is composed of two subunits (α and β), which form an α2β2 complex that catalyzes the conversion of nucleoside 5′-diphosphates to deoxynucleotides (dNDPs). β2 contains the essential tyrosyl radical (Y122•) that generates a thiyl radical (C439•) in α2 where dNDPs are made. This oxidation occurs over 35 Å through a pathway of amino acid radical intermediates (Y122 → [W48] → Y356 in β2 to Y731 → Y730 → C439 in α2). However, chemistry is preceded by a slow protein conformational change(s) that prevents observation of these intermediates. 2,3,5-Trifluorotyrosine site-specifically inserted at position 122 of β2 (F3Y•-β2) perturbs its conformation and the driving force for radical propagation, while maintaining catalytic activity (1.7 s–1). Rapid freeze–quench electron paramagnetic resonance spectroscopy and rapid chemical-quench analysis of the F3Y•-β2, α2, CDP, and ATP (effector) reaction show generation of 0.5 equiv of Y356• and 0.5 equiv of dCDP, both at 30 s–1. In the absence of an external reducing system, Y356• reduction occurs concomitant with F3Y reoxidation (0.4 s–1) and subsequent to oxidation of all α2s. In the presence of a reducing system, a burst of dCDP (0.4 equiv at 22 s–1) is observed prior to steady-state turnover (1.7 s–1). The [Y356•] does not change, consistent with rate-limiting F3Y reoxidation. The data support a mechanism where Y122• is reduced and reoxidized on each turnover and demonstrate for the first time the ability of a pathway radical in an active α2β2 complex to complete the catalytic cycle.
Redox-active tyrosines (Ys) play essential roles in enzymes involved in primary metabolism including energy transduction and deoxynucleotide production catalyzed by ribonucleotide reductases (RNRs). Thermodynamic characterization of Ys in solution and in proteins remains a challenge due to the high reduction potentials involved and the reactive nature of the radical state. The structurally characterized α3Y model protein has allowed the first determination of formal reduction potentials (E°′) for a Y residing within a protein (Berry, B. W.; Martínez-Rivera, M. C.; Tommos, C. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 9739–9743). Using Schultz’s technology, a series of fluorotyrosines (FnY, n = 2 or 3) was site-specifically incorporated into α3Y. The global protein properties of the resulting α3(3,5)F2Y, α3(2,3,5)F3Y, α3(2,3)F2Y and α3(2,3,6)F3Y variants are essentially identical to those of α3Y. A protein film square-wave voltammetry approach was developed to successfully obtain reversible voltammograms and E°’s of the very high-potential α3FnY proteins. E°′(pH 5.5; α3FnY(O•/OH)) spans a range of 1040 ± 3 mV to 1200 ± 3 mV versus the normal hydrogen electrode. This is comparable to the potentials of the most oxidizing redox cofactors in Nature. The FnY analogs, and the ability to site-specifically incorporate them into any protein of interest, provide new tools for mechanistic studies on redox-active Ys in proteins and on functional and aberrant hole-transfer reactions in metallo-enzymes. The former application is illustrated here by using the determined α3FnY ΔE°’s to model the thermodynamics of radical-transfer reactions in FnY-RNRs and to experimentally test and support the key prediction made.
Characterization of mRNA sequences is a critical aspect of mRNA drug development and regulatory filing. Herein, we developed a novel bottom-up oligonucleotide sequence mapping workflow combining multiple endonucleases that cleave mRNA at different frequencies. RNase T1, colicin E5, and mazF were applied in parallel to provide complementary sequence coverage for large mRNAs. Combined use of multiple endonucleases resulted in significantly improved sequence coverage: greater than 70% sequence coverage was achieved on mRNAs near 3000 nucleotides long. Oligonucleotide mapping simulations with large human RNA databases demonstrate that the proposed workflow can positively identify a single correct sequence from hundreds of similarly sized sequences. In addition, the workflow is sensitive and specific enough to detect minor sequence impurities such as single nucleotide polymorphisms (SNPs) with a sensitivity of less than 1%. LC-MS/MS-based oligonucleotide sequence mapping can serve as an orthogonal sequence characterization method to techniques such as Sanger sequencing or next-generation sequencing (NGS), providing high-throughput sequence identification and sensitive impurity detection.
Fluorinated tyrosines (FnY’s, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y’s, a stable Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356 in β and 731 and 730 in α) to initiate the radical-dependent nucleotide reduction process. FnY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β and the X-ray structures of each resulting β with a diferric cluster are reported and compared with wt-β2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1 Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-β2. Each FnY·-β2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the 19F nucleus provide unique signatures of each FnY· that are readily distinguishable from unlabeled Y·’s. The variability of the abiotic FnY pKa’s (6.4 to 7.8) and reduction potentials (−30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·’s in catalysis and to investigate the importance and identity of hopping Y·’s within redox active proteins proposed to protect them from uncoupled radical chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.