The relationship between metformin and prostate cancer (PCa) remains controversial. To clarify this association, the PubMed, Embase and Cochrane library databases were systematically searched from their inception dates to May 23, 2018, using the keywords “metformin” and “prostate cancer” to identify the related studies. The results included incidence, overall survival (OS), PCa-specific survival (CSS) and recurrence-free survival (RFS), which were measured as hazard ratios (HR) with a 95% confidence interval (95% CI) using Review Manager 5.3 software. A total of 30 cohort studies, including 1,660,795 patients were included in this study. Our study revealed that metformin treatment improves OS, CSS and RFS in PCa (HR = 0.72, 95% CI: 0.59–0.88, P = 0.001; HR = 0.78, 95% CI: 0.64–0.94, P = 0.009; and HR = 0.60, 95% CI: 0.42–0.87 P = 0.006, respectively) compared with non-metformin treatment. However, metformin usage did not reduce the incidence of PCa (HR = 0.86, 95% CI: 0.55–1.34, P = 0.51). In conclusion, compared with non-metformin treatment, metformin therapy can significantly improve OS, CSS and RFS in PCa patients. No association was noted between metformin therapy and PCa incidence. This study indicates a useful direction for the clinical treatment of PCa.
Spider toxins are molecularly diverse and some display not only a strong antibacterial effect but also exhibit significant inhibition of tumor growth and promote tumor cell apoptosis. The aim of the present investigation was to explore different antitumor effects of the spider peptide toxin lycosin-I through different pathways at different concentrations. It was found that by inactivating STAT3 pathway, high concentrations of lycosin-I induce apoptosis in prostate cancer cells and low concentrations of lycosin-I inhibit the migration of prostate cancer cells. This finding provides favorable evidence for further study of the molecular diversity of spider toxins. Impact statement The spider peptide toxin has become an important research topic. These toxins are molecularly diverse and some display not only a strong antibacterial effect but also exhibit significant inhibition of tumor growth and promote tumor cell apoptosis. Inspired by previous studies, the present study aims to investigate the effects of different concentrations of lycosin-I on the invasiveness and apoptosis of human prostate cancer cells. The findings provide favorable evidence for further study of the molecular diversity of spider toxins.
Aim: A gene set based systematic analysis strategy is used to investigate prostate tumors and its subclusters with focuses on similarities and differences of biological functions. Results: Dysregulation of methylation status, as well as RAS/RAF/ERK and PI3K-ATK signaling pathways, were found to be the most dramatic changes during prostate cancer tumorigenesis. Besides, neural and inflammation microenvironment is also significantly divergent between tumor and adjacent tissues. Insights of subclasses within prostate tumor cohorts revealed four different clusters with distinct gene expression patterns. We found that samples are mainly clustered by immune environments and proliferation traits. Conclusion: The findings of this article may help to advance the progress of identifying better diagnosis biomarkers and therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.