The present study addresses the differential expression of Spirulina platensis proteins detected during cold-induced stress, analyzed at the subcellular level. In performing differential expression analysis, the results revealed upregulated proteins in every subcellular fraction, including two-component response systems, DNA repair, molecular chaperones, stress-induced proteins and proteins involved in other biological processes such as secretion systems and nitrogen assimilation. The chlorophyll biosynthetic proteins, protochlorophyllide oxidoreductase and ChlI, had unique expression patterns as detected in the thylakoid membrane; the levels of these proteins immediately decreased during the first 45 min of low-temperature exposure. In contrast, their expression levels significantly increased after low-temperature exposure, indicating the relevance of the chlorophyll biosynthesis in Spirulina in response to low-temperature stress in the light condition. In addition, this is the first report in which genome-based protein identification in S. platensis by peptide mass fingerprinting was performed using the database derived from the unpublished Spirulina genome sequence.
Aims and objectives: Bilingual children constantly experience spontaneous switching between languages in everyday settings, and some researchers suggest that this experience leads to an advantage in task performance during executive function tasks. Neural processing during executive function tasks remains largely unknown, especially in young bilingual children. Methodology: Using functional near-infrared spectroscopy, this study examined whether young children who attended an immersion second-language program demonstrated enhanced cognitive shifting and lateral prefrontal activation. Data and analysis: We recruited children ( N = 24) who attended an international nursery school, and examined whether their performance on cognitive shifting, and whether the oxygenated hemoglobin changes in the prefrontal regions during the task, were correlated with the children’s second-language verbal age and the length of time the children had been speaking the second language. Findings: Results revealed that the verbal age of the second language and the length of time speaking it were significantly correlated with behavioral performances of cognitive shifting tasks. However, they were not correlated with the activations in the lateral prefrontal regions. Originality: We examined the neural correlates of bilingual effects on cognitive shifting and prefrontal activations in young children. Implications: The results suggest that second-language experience may not be directly related to neural processing in the lateral prefrontal cortex, at least in young children.
Executive function (EF) broadly refers to a set of higher order cognitive control processes that are involved in goal-directed behaviors and serve cognitive functions, such as working memory, inhibitory control, attention shifting, and planning (Diamond, 2013; Garon, Bryson, & Smith, 2008). EF is related to various aspects of child functioning, such as school readiness and success (Blair & Razza, 2007),
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.