Abstract.One of the primary ability of an intelligent mobile robot system is obstacle avoidance. BUG algorithms are classic examples of the algorithms used for achieving obstacle avoidance. Unlike many other planning algorithms based on global knowledge, BUG algorithms assume only local knowledge of the environment and a global goal. Among the variations of the BUG algorithms that prevail, BUG-0, BUG-1 and BUG-2 are the more prominent versions. The exhaustive search algorithm present in BUG-1 makes it more reliable and safer for practical applications. Overall, this provides a more predictable and dependable performance. Hence, the essential focus in this paper is on implementing the BUG-1 algorithm across a group of robots to move them from a start location to a target location. The results are compared with the results from BUG-1 algorithm implemented on a single robot. The strategy developed in this work reduces the time involved in moving the robots from starting location to the target location. Further, the paper shows that the total distance covered by each robot in a multi robot-system is always lesser than or equal to that travelled by a single robot executing the same problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.