According to the U.S. Department of Energy, a significant portion of energy used in buildings is wasted. If the occupancy quantity in a pre-determined thermal zone is aware, a building automation system (BAS) is able to intelligently adjust the building operation to provide “just-enough” heating, cooling, and ventilation capacities to building users. Therefore, an occupancy counting device that can be widely deployed at low prices with low failure rate, small form-factor, good usability, and conserved user privacy is highly desirable. Existing occupancy detection or recognition sensors (e.g., passive infrared, camera, acoustic, RFID, CO2) cannot meet all these above system requirements. In this work, we present an IoT (Internet of Things) prototype that collects room occupancy information to assist in the operation of energy-efficient buildings. The proposed IoT prototype consists of Lattice iCE40-HX1K stick FPGA boards and Raspberry Pi modules. Two pairs of our prototypes are installed at a door frame. When a person walks through this door frame, blocking of active infrared streams between both pairs of IoT prototypes is detected. The direction of human movement is obtained through comparing occurrence time instances of two obstructive events. Thus, the change in occupancy quantity of a thermal zone is calculated and updated. Besides, an open-source application user interface is developed to allow anonymous users or building automation systems to easily acquire room occupancy information. We carry out a three-month random test of human entry and exit of a thermal zone, and find that the occupancy counting accuracy is 97%. The proposed design is completely made of off-the-shelf electronic components and the estimated cost is less than $160. To investigate the impact on building energy savings, we conduct a building energy simulation using EnergyPlus and find the payback period is approximately 4 months. In summary, the proposed design is miniature, non-intrusive, ease of use, low failure rate, and cost-effective for smart buildings.
A wireless sensor network (WSN) is typically composed of spatially distributed miniature sensors that help collect large amounts of real-time environmental data from buildings. These environmental data (e.g., temperature, humidity, CO2 concentration) can assist a series of heating, ventilation, and air conditioning (HVAC) equipment to increase the building energy efficiency. From a system design perspective, heterogeneous wireless sensor networks need to address two challenges. First, sensor data acquisition, conversion, fusion, and packaging involve a series of software processing. Since each type of environmental sensor typically has unique processing requirements, it is difficult to develop an efficient software framework to combine the processing of multiple heterogeneous sensors. Second, during normal operation of a heterogeneous wireless sensor network, if users insert or remove some environmental sensors, the entire WSN system should operate normally. In this work, in order to solve the above two system design challenges, we have developed a low-power, low-cost, small form-factor WSN development platform, and its software framework can perform efficient data acquisition, conversion, fusion, and packaging for multiple heterogeneous sensors. Our proposed software framework enables easy and rapid WSN system deployment without affecting the overall functionality of each node. The proposed design differs from existing WSN platforms in that it emphasizes advanced high-level usability and reduces time to market without sacrificing low-level features. The proposed WSN system has been implemented and tested in an office building for indoor fire hazard detection. The experimental results show that our software framework can successfully complete data acquisition, conversion, fusion, and packaging tasks for three heterogeneous environmental sensors. In addition, we have verified that our software framework supports robust system operation when inserting or removing sensors from an existing heterogeneous WSN system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.