A novel approach for the synthesis of colloidal silver nanoprisms (AgNPrs) with controllable localized surface plasmon resonance (LSPR) via a chemical shape transformation of silver nanospheres (AgNSs) is presented. The shape conversion is carried out by feeding hydrogen peroxide (H 2 O 2 ) solution into a starchstabilized AgNS colloid under ambient conditions. Oxidative dissolution and the mild reducing action of H 2 O 2 under alkaline conditions serve as the principal reactions for the shape transformation process. After addition of H 2 O 2 , the instantaneous shape transformation events can be visualized by the naked eye through the color change of the colloid. Initial concentration of AgNSs, molar ratio of H 2 O 2 : AgNSs, H 2 O 2 injection rate, and mixing efficiency are the key parameters for controlling the LSPR wavelengths of AgNPrs as the in-plane dipole plasmon resonance can be selectively tuned across visible and near infrared regions (i.e., 460-850 nm). The obtained AgNPrs exhibited mixed geometries e.g. hexagonal, truncated triangular, rounded-tip triangular prisms, and circular disks with average bisector lengths of 30 to 120 nm and the thickness of 10 to 20 nm. A colloid of highly concentrated AgNPrs having a final concentration up to 11 mM can be produced within 10 min.
Triphenylamine-based fluorophores containing pyrene or corannulene show variable fluorescence quenching sensitivity toward nitro explosives. The most sensitive fluorophore is capable of detecting TNT on the ng cm(-2) scale; the array is useful for identifying nitro aromatics.
Gold nanoparticles stabilized by thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM-AuNPs) were prepared by surface grafting of thiol-terminated PNIPAM onto citrate-stabilized AuNPs. The color change of the PNIPAM-AuNPs solution from red to blue-purple without precipitation when the solution was heated to 40 °C, above the lower critical solution temperature (LCST) of PNIPAM, indicated the thermoresponsive property of the synthesized AuNPs. PNIPAM-AuNPs were used to detect proteins by chemical nose approach based on fluorescence quenching of fluorophore by AuNPs. An array-based sensing platform for detection of six proteins, namely bovine serum albumin, lysozyme, fibrinogen, concanavalin A, hemoglobin, holo-transferrin human can be successfully developed from the PNIPAM-AuNPs having different molecular weights (4 and 8 kDa) and conformation (varied heat treatment from 25 to 40 °C) in combination with a tricationic branched phenylene-ethynylene fluorophore. From principal component analysis (PCA) followed by linear discriminant analysis (LDA), 100% accuracy of protein classification using a leave-one-out (LOO) approach can be achieved by using only two types of PNIPAM-AuNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.