At early stages of the mammalian visual cortex, neurons with similar stimulus selectivities are vertically arrayed through the thickness of the cortical sheet and clustered in patches or bands across the surface. This organization, referred to as a 'column', has been found with respect to one-dimensional stimulus parameters such as orientation of stimulus contours, eye dominance of visual inputs, and direction of stimulus motion. It is unclear, however, whether information with extremely high dimensions, such as visual shape, is organized in a similar columnar fashion or in a different manner in the brain. Here we report that the anterior inferotemporal area of the monkey cortex, the final station of the visual cortical stream crucial for object recognition, consists of columns, each containing cells responsive to similar visual features of objects.
We mapped ocular dominance columns (ODCs) in normal human subjects using high-field (4 T) functional magnetic resonance imaging (fMRI) with a segmented echo planar imaging technique and an in-plane resolution of 0.47 x 0.47 mm(2). The differential responses to left or right eye stimulation could be reliably resolved in anatomically well-defined sections of V1. The orientation and width ( approximately 1 mm) of mapped ODC stripes conformed to those previously revealed in postmortem brains stained with cytochrome oxidase. In addition, we showed that mapped ODC patterns could be largely reproduced in different experiments conducted within the same experimental session or over different sessions. Our results demonstrate that high-field fMRI can be used for studying the functions of human brains at columnar spatial resolution.
ObjectiveTo examine the protective effects of appropriate personal protective equipment for frontline healthcare professionals who provided care for patients with coronavirus disease 2019 (covid-19).DesignCross sectional study.SettingFour hospitals in Wuhan, China.Participants420 healthcare professionals (116 doctors and 304 nurses) who were deployed to Wuhan by two affiliated hospitals of Sun Yat-sen University and Nanfang Hospital of Southern Medical University for 6-8 weeks from 24 January to 7 April 2020. These study participants were provided with appropriate personal protective equipment to deliver healthcare to patients admitted to hospital with covid-19 and were involved in aerosol generating procedures. 77 healthcare professionals with no exposure history to covid-19 and 80 patients who had recovered from covid-19 were recruited to verify the accuracy of antibody testing.Main outcome measuresCovid-19 related symptoms (fever, cough, and dyspnoea) and evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, defined as a positive test for virus specific nucleic acids in nasopharyngeal swabs, or a positive test for IgM or IgG antibodies in the serum samples.ResultsThe average age of study participants was 35.8 years and 68.1% (286/420) were women. These study participants worked 4-6 hour shifts for an average of 5.4 days a week; they worked an average of 16.2 hours each week in intensive care units. All 420 study participants had direct contact with patients with covid-19 and performed at least one aerosol generating procedure. During the deployment period in Wuhan, none of the study participants reported covid-19 related symptoms. When the participants returned home, they all tested negative for SARS-CoV-2 specific nucleic acids and IgM or IgG antibodies (95% confidence interval 0.0 to 0.7%).ConclusionBefore a safe and effective vaccine becomes available, healthcare professionals remain susceptible to covid-19. Despite being at high risk of exposure, study participants were appropriately protected and did not contract infection or develop protective immunity against SARS-CoV-2. Healthcare systems must give priority to the procurement and distribution of personal protective equipment, and provide adequate training to healthcare professionals in its use.
A fundamental challenge in social cognition is how humans learn another person's values to predict their decision-making behavior. This form of learning is often assumed to require simulation of the other by direct recruitment of one's own valuation process to model the other's process. However, the cognitive and neural mechanism of simulation learning is not known. Using behavior, modeling, and fMRI, we show that simulation involves two learning signals in a hierarchical arrangement. A simulated-other's reward prediction error processed in ventromedial prefrontal cortex mediated simulation by direct recruitment, being identical for valuation of the self and simulated-other. However, direct recruitment was insufficient for learning, and also required observation of the other's choices to generate a simulated-other's action prediction error encoded in dorsomedial/dorsolateral prefrontal cortex. These findings show that simulation uses a core prefrontal circuit for modeling the other's valuation to generate prediction and an adjunct circuit for tracking behavioral variation to refine prediction.
Although recent psychophysical studies indicate that visual awareness and top-down attention are two distinct processes, it is not clear how they are neurally dissociated in the visual system. Using a two-by-two factorial functional magnetic resonance imaging design with binocular suppression, we found that the visibility or invisibility of a visual target led to only nonsignificant blood oxygenation level-dependent (BOLD) effects in the human primary visual cortex (V1). Directing attention toward and away from the target had much larger and robust effects across all study participants. The difference in the lower-level limit of BOLD activation between attention and awareness illustrates dissociated neural correlates of the two processes. Our results agree with previously reported V1 BOLD effects on attention, while they invite a reconsideration of the functional role of V1 in visual awareness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.