PEGylation is a pharmaceutical technology that involves the covalent attachment of polyethylene glycol (PEG) to a drug to improve its pharmacokinetic, pharmacodynamic, and immunological profiles, and thus, enhance its therapeutic effect. Currently, PEGylation is used to modify proteins, peptides, oligonucleotides, antibody fragments, and small organic molecules. Research groups are striving to improve the consistencies of PEGylated drugs and to PEGylate commercialized proteins and small organic molecules. Furthermore, the PEGylations of novel medications, like oligonucleotides and antibody fragments, are being pursued to improve their bioavailabilities. This active research in the PEGylation field and the continued growth of the biopharmaceutical market predicts that PEGylated drugs have a bright future.
Glucagon-like peptide-1-(7-36) (GLP-1) is a hormone derived from the proglucagon molecule, which is considered a highly desirable antidiabetic agent mainly due to its unique glucose-dependent stimulation of insulin secretion profiles. However, the development of a GLP-1-based pharmaceutical agent has a severe limitation due to its very short half-life in plasma, being primarily degraded by dipeptidyl peptidase IV (DPP-IV) enzyme. To overcome this limitation, in this article we propose a novel and potent DPP-IV-resistant form of a poly(ethylene glycol)-conjugated GLP-1 preparation and its pharmacokinetic evaluation in rats. Two series of mono-PEGylated GLP-1, (i) N-terminally modified PEG(2k)-N(ter)-GLP-1 and (ii) isomers of Lys(26), Lys(34) modified PEG(2k)-Lys-GLP-1, were prepared by using mPEG-aldehyde and mPEG-succinimidyl propionate, respectively. To determine the optimized condition for PEGylation, the reactions were monitored at different pH buffer and time intervals by RP-HPLC and MALDI-TOF-MS. The in vitro insulinotropic effect of PEG(2k)-Lys-GLP-1 showed comparable biological activity with native GLP-1 (P = 0.11) in stimulating insulin secretion in isolated rat pancreatic islet and was significantly more potent than the PEG(2k)-N(ter)-GLP-1 (P < 0.05) that showed a marked reduced potency. Furthermore, PEG(2k)-Lys-GLP-1 was clearly resistant to purified DPP-IV in buffer with 50-fold increased half-life compared to unmodified GLP-1. When PEG(2k)-Lys-GLP-1 was administered intravenously and subcutaneously into rats, PEGylation improved the half-life, which resulted in substantial improvement of the mean plasma residence time as a 16-fold increase for iv and a 3.2-fold increase for sc. These preliminary results suggest a site specifically mono-PEGylated GLP-1 greatly improved the pharmacological profiles; thus, we anticipated that it could serve as potential candidate as an antidiabetic agent for the treatment of non-insulin-dependent diabetes patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.