A new class of quasi-zero-stiffness (QZS) vibration isolation systems, inspired by the origami metamaterial, is proposed to achieve high-performance vibration suppression in this paper. According to the mechanical characteristics of Tachi-Miura origami (TMO) with single degree-of-freedom, the nonlinear geometric relationship is developed with the folding angle as the master variable. By utilizing equivalent transformation and virtual work principle, the static model is established, the in uence of structural parameters on stiffness is investigated, and the negative stiffness mechanism of origami mechanism is revealed. By adding a linear spring with positive stiffness to the origami in parallel, the Tachi-Miura origami vibration isolator (TMOriVi) is obtained. Subsequently, the governing equation is presented by means of the harmonic balance method. Two types of instability situations, jump phenomenon and unbounded response, are studied, and their analytic criteria and relationship are derived. Finally, through the parametric in uence analysis and a series of comparative studies, the effectiveness and superiority of the proposed isolator are veri ed. The proposed vibration isolation system with great design exibility exhibits a signi cant potential in the eld of low-frequency vibration isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.