Equipped with micro wireless sensor nodes, a unmanned aerial vehicle) cluster can form an emergency communication network, which can have several applications such as environmental monitoring, disaster relief, military operations and so on. However, situations where there is excessive aggregation and small amount of dispersion of the unmanned aerial vehicle cluster may occur when the network is formed. To mitigate these, a solution based on a 3D virtual force driven by self-adaptive deployment (named as 3DVFSD) is proposed. As a result, the three virtual forces of central gravity, uniform force, and boundary constraint force are combined to act on each node of the communication network. By coordinating the distance between the nodes, especially the threshold of the distance between the boundary node and the boundary, the centralized nodes can be relatively dispersed. Meanwhile, the nodes can be prevented from being too scattered by constraining the distance from the boundary node to the end. The simulation results show that the 3DVFSD algorithm is superior to the traditional virtual force-driven deployment strategy in terms of convergence speed, coverage, and uniformity.
BackgroundPulmonary arterial hypertension (PAH) is a devastating cardio-pulmonary vascular disease in which chronic elevated pulmonary arterial pressure and pulmonary vascular remodeling lead to right ventricular failure and premature death. However, the exact molecular mechanism causing PAH remains unclear.MethodsRNA sequencing was used to analyze the transcriptional profiling of controls and rats treated with monocrotaline (MCT) for 1, 2, 3, and 4 weeks. Weighted gene co-expression network analysis (WGCNA) was employed to identify the key modules associated with the severity of PAH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the potential biological processes and pathways of key modules. Real-time PCR and western blot analysis were used to validate the gene expression. The hub genes were validated by an independent dataset obtained from the Gene Expression Omnibus database.ResultsA total of 26 gene modules were identified by WGCNA. Of these modules, two modules showed the highest correlation with the severity of PAH and were recognized as the key modules. GO analysis of key modules showed the dysregulated inflammation and immunity, particularly B-cell-mediated humoral immunity in MCT-induced PAH. KEGG pathway analysis showed the significant enrichment of the B-cell receptor signaling pathway in the key modules. Pathview analysis revealed the dysregulation of the B-cell receptor signaling pathway in detail. Moreover, a series of humoral immune response-associated genes, such as BTK, BAFFR, and TNFSF4, were found to be differentially expressed in PAH. Additionally, five genes, including BANK1, FOXF1, TLE1, CLEC4A1, and CLEC4A3, were identified and validated as the hub genes.ConclusionThis study identified the dysregulated B-cell receptor signaling pathway, as well as novel genes associated with humoral immune response in MCT-induced PAH, thereby providing a novel insight into the molecular mechanisms underlying inflammation and immunity and therapeutic targets for PAH.
Load balance plays an important role in the information acquisition system's performance. Especially in the state of cloud storage, the load balance is well done, which is conducive to the full utilization of computing resources and reduces the response time of distributed operations. The internal mechanism of original page load balance is given based on the analysis of the two recent commonly used dynamic load balance methods. Five original page oriented load balancing strategies are compared from the experimental and theoretical perspectives on the premise of calculating load index. Finally, the conclusion is drawn that date channel storage calculation sensitive partition is the most optimal load partition strategy.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.