Prolonged exposure to negative stressors could be harmful if a subject cannot respond appropriately. Strategies evolved to respond to stress, including repetitive displacement behaviours, are important in maintaining behavioural homoeostasis. In rodents, self-grooming is a frequently observed repetitive behaviour believed to contribute to post-stress de-arousal with adaptive value. Here we identified a rat limbic di-synaptic circuit that regulates stress-induced self-grooming with positive affective valence. This circuit links hippocampal ventral subiculum to ventral lateral septum (LSv) and then lateral hypothalamus tuberal nucleus. Optogenetic activation of this circuit triggers delayed but robust excessive grooming with patterns closely resembling those evoked by emotional stress. Consistently, the neural activity of LSv reaches a peak before emotional stress-induced grooming while inhibition of this circuit significantly suppresses grooming triggered by emotional stress. Our results uncover a previously unknown limbic circuitry involved in regulating stress-induced self-grooming and pinpoint a critical role of LSv in this ethologically important behaviour.
Iron accumulation in the substantia nigra is recognized as a hallmark of Parkinson’s disease (PD). Therefore, reducing accumulated iron and associated oxidative stress is considered a promising therapeutic strategy for PD. However, current iron chelators have poor membrane permeability and lack cell-type specificity. Here we identified GSK-J4, a histone demethylase inhibitor with the ability to cross blood brain barrier, as a potent iron suppressor. Only a trace amount of GSK-J4 significantly and selectively reduced intracellular labile iron in dopaminergic neurons, and suppressed H2O2 and 6-OHDA-induced cell death in vitro. The iron-suppressive effect was mainly mediated by inducing an increase in the expression of the iron exporter ferroportin-1. In parallel, GSK-J4 rescued dopaminergic neuron loss and motor defects in 6-OHDA-induced PD rats, which was accompanied by reduction of oxidative stress. Importantly, GSK-J4 rescued the abnormal changes of histone methylation, H3K4me3 and H3K27me3 during 6-OHDA treatment although the iron-suppressive and neuroprotective effects were sensitive to H3K4me3 inhibition only. Also, upregulating H3K4me3 increased ferroportin-1 expression and neuroprotection. Taken together, we demonstrate a previously unappreciated action of GSK-J4 on cell-specific iron suppression and neuroprotection via epigenetic mechanism. Compared with conventional iron chelators, this compound has a stronger therapeutic potential for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.