Pericytes are known to play critical roles in vascular development and homeostasis. However, the distribution of cavernous pericytes and their roles in penile erection is unclear. Herein we report that the pericytes are abundantly distributed in microvessels of the subtunical area and dorsal nerve bundle of mice, followed by dorsal vein and cavernous sinusoids. We further confirmed the presence of pericytes in human corpus cavernosum tissue and successfully isolated pericytes from mouse penis. Cavernous pericyte contents from diabetic mice and tube formation of cultured pericytes in high glucose condition were greatly reduced compared with those in normal conditions. Suppression of pericyte function with anti-PDGFR-β blocking antibody deteriorated erectile function and tube formation in vivo and in vitro diabetic condition. In contrast, enhanced pericyte function with HGF protein restored cavernous pericyte content in diabetic mice, and significantly decreased cavernous permeability in diabetic mice and in pericytes-endothelial cell co-culture system, which induced significant recovery of erectile function. Overall, these findings showed the presence and distribution of pericytes in the penis of normal or pathologic condition and documented their role in the regulation of cavernous permeability and penile erection, which ultimately explore novel therapeutics of erectile dysfunction targeting pericyte function.
Penile erection is a neurovascular phenomenon, and erectile dysfunction (ED) is caused mainly by vascular risk factors or diseases, neurologic abnormalities, and hormonal disturbances. Men with diabetic ED often have severe endothelial dysfunction and peripheral nerve damage, which result in poor response to oral phosphodiesterase-5 inhibitors. Nerve injury-induced protein 1 (Ninjurin 1, Ninj1) is known to be involved in neuroinflammatory processes and to be related to vascular regression during the embryonic period. Here, we demonstrate in streptozotocin-induced diabetic mice that inhibition of the Ninj1 pathway by administering Ninj1-neutralizing antibody (Ninj1-Ab) or by using Ninj1-knockout mice successfully restored erectile function through enhanced penile angiogenesis and neural regeneration. Angiopoietin-1 (Ang1) expression was down-regulated and angiopoietin-2 expression was up-regulated in the diabetic penis compared with that in controls, and these changes were reversed by treatment with Ninj1-Ab. Ninj1 blockade-mediated penile angiogenesis and neural regeneration as well as recovery of erectile function were abolished by inhibition of Ang1-Tie2 (tyrosine kinase with Ig and epidermal growth factor homology domain-2) signaling with soluble Tie2 antibody or Ang1 siRNA. The present results suggest that inhibition of the Ninj1 pathway will be a novel therapeutic strategy for treating ED.diabetes mellitus | male sexual dysfunction | peripheral neuropathy E rectile dysfunction (ED), which is defined as an inability to attain or maintain penile erection sufficient for satisfactory sexual intercourse (1), is caused by a variety of pathologic conditions including vascular risk factors or diseases, neurologic abnormalities, and hormonal disturbances (2, 3). Diabetes mellitus is one of the most common causes of ED, and about 50-75% of male diabetic patients have ED (4, 5). Multiple pathogenetic factors, such as endothelial dysfunction, atherosclerosis, autonomic neuropathy, inflammation, fibrosis, and hypogonadism, are involved in diabetic ED (4-6). The multiple factors causing diabetic ED contribute to reduced responsiveness to currently available oral phosphodiesterase-5 (PDE5) inhibitors, which enhance the nitric oxide (NO)-cGMP pathway by inhibiting the breakdown of cGMP (7). The severity of endothelial dysfunction and peripheral neuropathy are mainly responsible for the poor responsiveness of diabetic patients to PDE5 inhibitors (8, 9). Because the effects of PDE5 inhibitors depend on endogenous NO formation, PDE5 inhibitors fail to increase the cGMP level above the threshold required for penile erection if bioavailable NO is insufficient as the result of severe endothelial dysfunction or peripheral neuropathy (9). Therefore, a new treatment strategy that corrects both endothelial dysfunction and peripheral neuropathy is required for men with diabetic ED.A variety of strategies targeting therapeutic angiogenesis and neural regeneration have been introduced to restore erectile function at the preclinical lev...
Penile erection requires well-coordinated interactions between vascular and nervous systems. Penile neurovascular dysfunction is a major cause of erectile dysfunction (ED) in patients with diabetes, which causes poor response to oral phosphodiesterase-5 inhibitors. Dickkopf2 (DKK2), a Wnt antagonist, is known to promote angiogenesis. Here, using DKK2-Tg mice or DKK2 protein administration, we demonstrate that the overexpression of DKK2 in diabetic mice enhances penile angiogenesis and neural regeneration and restores erectile function. Transcriptome analysis revealed that angiopoietin-1 and angiopoietin-2 are target genes for DKK2. Using an endothelial cell-pericyte coculture system and ex vivo neurite sprouting assay, we found that DKK2-mediated juxtacrine signaling in pericyte-endothelial cell interactions promotes angiogenesis and neural regeneration through an angiopoietin-1-Tie2 pathway, rescuing erectile function in diabetic mice. The dual angiogenic and neurotrophic effects of DKK2, especially as a therapeutic protein, will open new avenues to treating diabetic ED.
Introduction A proper cavernous endothelial cell culture system would be advantageous for the study of the pathophysiologic mechanisms involved in endothelial dysfunction and erectile dysfunction (ED). Aim To establish a nonenzymatic technique, which we termed the “Matrigel-based sprouting endothelial cell culture system,” for the isolation of mouse cavernous endothelial cells (MCECs) and an in vitro model that mimics in vivo situation for diabetes-induced ED. Methods For primary MCEC culture, mouse cavernous tissue was implanted into Matrigel and sprouting cells from the tissue were subcultivated. To establish an in vitro model for diabetes-induced ED, the primary cultured MCECs were exposed to a normal-glucose (5 mmoL) or a high-glucose (30 mmoL) condition for 48 hours. Main Outcome Measures The purity of isolated cells was determined by fluorescence-activated cell sorting analysis. MCECs incubated under the normal- or the high-glucose condition were used for Western blot, cyclic guanosine monophosphate (cGMP) quantification, and in vitro angiogenesis assay. Results We could consistently isolate high-purity MCECs (about 97%) with the Matrigel-based sprouting endothelial cell culture system. MCECs were subcultured up to the fifth passage and no significant changes were noted in endothelial cell morphology or purity. The phosphorylation of Akt and eNOS and the cGMP concentration were significantly lower in MCECs exposed to high glucose than in those exposed to normal glucose. MCECs exposed to the normal-glucose condition formed well-organized capillary-like structures, whereas derangements in tube formation were noted in MCECs exposed to high glucose. The protein expression of transforming growth factor-β1 (TGF-β1) and phospho-Smad2 was significantly increased by exposure to high glucose. Conclusion The Matrigel-based sprouting endothelial cell culture system is a simple, technically feasible, and reproducible technique for isolating pure cavernous endothelial cells in mice. An in vitro model for diabetic ED will be a valuable tool for evaluating the angiogenic potential of novel endogenous or synthetic modulators.
Epigenetic modifications, such as histone acetylation/deacetylation, have been shown to play a role in the pathogenesis of fibrotic disease. Peyronie's disease (PD) is a localized fibrotic process of the tunica albuginea, which leads to penile deformity. This study was undertaken to determine the anti-fibrotic effect of small interfering RNA (siRNA)-mediated silencing of histone deacetylase 2 (HDAC2) in primary fibroblasts derived from human PD plaque. PD fibroblasts were pre-treated with HDAC2 siRNA and then stimulated with transforming growth factor-b1 (TGF-b1). Protein was extracted from treated fibroblasts for Western blotting and the membranes were probed with antibody to phospho-Smad2/Smad2, phospho-Smad3/Smad3, smooth muscle a-actin and extracellular matrix proteins, including plasminogen activator inhibitor-1, fibronectin, collagen I and collagen IV. We also performed immunocytochemistry to detect the expression of extracellular matrix proteins and to examine the effect of HDAC2 siRNA on the TGF-b1-induced nuclear translocation of Smad2/3 in fibroblasts. Knockdown of HDAC2 in PD fibroblasts abrogated TGF-b1-induced extracellular matrix production by blocking TGF-b1-induced phosphorylation and nuclear translocation of Smad2 and Smad3, and by inhibiting TGF-b1-induced transdifferentiation of fibroblasts into myofibroblasts. Decoding the individual function of the HDAC isoforms by use of siRNA technology, preferably siRNA for HDAC2, may lead to the development of specific and safe epigenetic therapies for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.