Introduction With the advent of genetically modified mice, it seems particularly advantageous to develop a mouse model of diabetic erectile dysfunction. Aim To establish a mouse model of type I diabetes by implementation of either multiple low-dose streptozotocin (STZ) protocol or single high-dose STZ protocol and to evaluate morphologic alterations in the cavernous tissue and subsequent derangements in penile hemodynamics in vivo. Methods Eight-week-old C57BL/6J mice were divided into three groups: a control group, a group administered the multiple low-dose STZ protocol (50 mg/kg × 5 days), and a group administered the single high-dose STZ protocol (200 mg/kg). Main Outcome Measures After 8 weeks, erectile function was measured by electrical stimulation of the cavernous nerve. The penis was then harvested and stained with hydroethidine (in situ analysis of superoxide anion), TUNEL, or antibodies to nitrotyrosine (marker of peroxynitrite formation), PECAM-1, smooth muscle α-actin, and phospho-eNOS. Penis specimens from a separate group of animals were used for phospho-eNOS and eNOS western blot or cGMP determination. Results Erectile function was significantly less in diabetic groups than in control group. The generation of superoxide anion and nitrotyrosine and the number of apoptotic cells in both cavernous endothelial and smooth muscle cells were significantly higher in diabetic groups than in control group. Cavernous tissue phospho-eNOS and cGMP expression and the number of endothelial and smooth muscle cells were lower in diabetic groups than in control group. Both diabetic models resulted in similar structural and functional derangements in the corpus cavernosum; however, the mortality rate was higher in mice receiving single high-dose of STZ than in those receiving multiple low-doses. Conclusion The mouse model of type I diabetes is useful and technically feasible for the study of the pathophysiologic mechanisms involved in diabetic erectile dysfunction.
Hypercholesterolemia-related endothelial cell dysfunction and decreased endothelium-derived nitric oxide formation may account for impaired angiogenesis and subsequent erectile dysfunction. Angiopoietin-1 (Ang1) is a critical angiogenic factor for vascular maturation and enhances vascular endothelial growth factor (VEGF)-induced angiogenesis in a complementary manner. We hypothesized that combined adenovirus-delivered human Ang1 (ad-Ang1) and VEGF165 (ad-VEGF165) gene transfer might promote angiogenesis cooperatively in a rat model of hypercholesterolemic erectile dysfunction and result in a recovery of erectile function. Ad-Ang1 and ad-VEGF165 were injected either alone or in combination into the corpus cavernosum of the penis. Combined gene transfer of both ad-Ang1 and ad-VEGF165 significantly increased cavernous angiogenesis, eNOS phosphorylation, and cGMP expression compared with that in the groups treated with either therapy alone. Erectile function, as evaluated by electrical stimulation of the cavernous nerve 2 and 8 weeks after treatment, was completely restored in the combined treatment group, whereas intracavernous injection of either ad-Ang1 or ad-VEGF165 alone elicited partial improvement. The results indicate that combined application of angiogenic factors may enhance cavernous angiogenesis cooperatively by reinforcing the endothelium both structurally and functionally, which results in an additive effect on erectile function in hypercholesterolemic rats.
Introduction It has been suggested that transforming growth factor-β1 (TGF-β1) plays an important role in the pathogenesis of diabetes-induced erectile dysfunction. Aim To investigate the expression and activity of Smad transcriptional factors, the key molecules for the initiation of TGF-β-mediated fibrosis, in the penis of streptozotocin (STZ)-induced diabetic rats. Methods Fifty-two 8-week-old Sprague–Dawley rats were used and divided into control and diabetic groups. Diabetes was induced by an intravenous injection of STZ. Main Outcome Measures Eight weeks later, erectile function was measured by electrical stimulation of the cavernous nerve (N = 12 per group). The penis was harvested and stained with Masson trichrome or antibody to TGF-β1, phospho-Smad2 (P-Smad2), smooth muscle α-actin, and factor VIII (N = 12 per group). Penis specimens from a separate group of animals were used for TGF-β1 enzyme-linked immunosorbent assay (ELISA), P-Smad2/Smad2, phospho-Smad3 (P-Smad3)/Smad3, fibronectin, collagen I, and collagen IV western blot, or hydroxyproline determination. Results Erectile function was significantly reduced in diabetic rats compared with that in controls. The expression of TGF-β1, P-Smad2, and P-Smad3 protein evaluated by ELISA or western blot was higher in diabetic rats than in controls. Compared with that in control rats, P-Smad2 expression was higher mainly in smooth muscle cells and fibroblasts of diabetic rats, whereas no significant differences were noted in endothelial cells or in the dorsal nerve bundle. Cavernous smooth muscle and endothelial cell contents were lower in diabetic rats than in controls. Cavernous fibronectin, collagen IV, and hydroxyproline content was significantly higher in diabetic rats than in controls. Conclusion Upregulation of TGF-β1 and activation of the Smad signaling pathway in the penis of diabetic rats might play important roles in diabetes-induced structural changes and deterioration of erectile function.
OBJECTIVEPatients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals.RESEARCH DESIGN AND METHODSFour groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test.RESULTSLocal delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin.CONCLUSIONSThese findings support the concept of cavernous endothelial regeneration by use of the recombinant Ang1 protein as a curative therapy for diabetic erectile dysfunction.
Downregulation of the expression of the angiogenic factors and their downstream signal molecules, and decreased endothelial content in the corpus cavernosum of hypercholesterolemic rats might play important roles in the deterioration of erectile function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.