The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.
Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services 1,2 . Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 1982-2009. We show a persistent and widespread increase of growing season integrated LAI (greening) over 25% to 50% of the global vegetated area, whereas less than 4% of the globe shows decreasing LAI (browning). Factorial simulations with multiple global ecosystem models suggest that CO 2 fertilization e ects explain 70% of the observed greening trend, followed by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) (4%). CO 2 fertilization e ects explain most of the greening trends in the tropics, whereas climate change resulted in greening of the high latitudes and the Tibetan Plateau. LCC contributed most to the regional greening observed in southeast China and the eastern United States. The regional e ects of unexplained factors suggest that the next generation of ecosystem models will need to explore the impacts of forest demography, di erences in regional management intensities for cropland and pastures, and other emerging productivity constraints such as phosphorus availability.Changes in vegetation greenness have been reported at regional and continental scales on the basis of forest inventory and satellite measurements 3-8 . Long-term changes in vegetation greenness are driven by multiple interacting biogeochemical drivers and land-use effects 9 . Biogeochemical drivers include the fertilization effects of elevated atmospheric CO 2 concentration (eCO 2 ), regional climate change (temperature, precipitation and radiation), and varying rates of nitrogen deposition. Land-use-related drivers involve changes in land cover and in land management intensity, including fertilization, irrigation, forestry and grazing 10 . None of these driving factors can be considered in isolation, given their strong interactions with one another. Previously, a few studies had investigated the drivers of global greenness trends 6,7,11 , with a limited number of models and satellite observations, which prevented an appropriate quantification of uncertainties 12 .Here, we investigate trends of leaf area index (LAI) and their drivers for the period 1982 to 2009 using three remotely sensed data sets (GIMMS3g, GLASS and GLOMAP) and outputs from ten ecosystem models run at global extent (see Supplementary Information). We use the growing season integrated leaf area index (hereafter, LAI; Methods) as the variable of our study. We first analyse global and regional LAI trends for the study period and differences between the three data sets. Using modelling results, we then quantify the contributions of CO 2 fertilization, climatic factors, nitrogen deposition and LCC to the observed trends...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.