The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.
For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.
Forests are the dominant terrestrial ecosystem on Earth. We review the environmental factors controlling their structure and global distribution and evaluate their current and future trajectory. Adaptations of trees to climate and resource gradients, coupled with disturbances and forest dynamics, create complex geographical patterns in forest assemblages and structures. These patterns are increasingly discernible through new satellite and airborne observation systems, improved forest inventories, and global ecosystem models. Forest biomass is a complex property affected by forest distribution, structure, and ecological processes. Since at least 1990, biomass density has consistently increased in global established forests, despite increasing mortality in some regions, suggesting that a global driver such as elevated CO 2 may be enhancing biomass gains. Global forests have also apparently become more dynamic. Advanced information about the structure, distribution, and biomass of the world's forests provides critical ecological insights and opportunities for sustainable forest management and enhancing forest conservation and ecosystem services.
There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement‐based constraints on the magnitude of net forest carbon uptake. We brought together forest sector C budgets for Canada, the United States, Europe, Russia, and China that were derived from forest inventory information, allometric relationships, and supplementary data sets and models. Together, these suggest that northern forests and woodlands provided a total sink for 0.6–0.7 Pg of C per year (1 Pg = 1015 g) during the early 1990s, consisting of 0.21 Pg C/yr in living biomass, 0.08 Pg C/yr in forest products, 0.15 Pg C/yr in dead wood, and 0.13 Pg C/yr in the forest floor and soil organic matter. Estimates of changes in soil C pools have improved but remain the least certain terms of the budgets. Over 80% of the estimated sink occurred in one‐third of the forest area, in temperate regions affected by fire suppression, agricultural abandonment, and plantation forestry. Growth in boreal regions was offset by fire and other disturbances that vary considerably from year to year. Comparison with atmospheric inversions suggests significant land C sinks may occur outside the forest sector.
Carbon accumulation in forests has been attributed to historical changes in land use and the enhancement of tree growth by CO2 fertilization, N deposition, and climate change. The relative contribution of land use and growth enhancement is estimated by using inventory data from five states spanning a latitudinal gradient in the eastern United States. Land use is the dominant factor governing the rate of carbon accumulation in these states, with growth enhancement contributing far less than previously reported. The estimated fraction of aboveground net ecosystem production due to growth enhancement is 2.0 +/- 4.4%, with the remainder due to land use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.