Background Epithelial–mesenchymal transition (EMT) is one of the mechanisms of airway remodeling in chronic asthma. Interleukin (IL)-24 has been implicated in the promotion of tissue fibrosis, and increased IL-24 levels have been observed in the nasal secretions and sputum of asthmatic patients. However, the role of IL-24 in asthmatic airway remodeling, especially in EMT, remains largely unknown. We aimed to explore the effect and mechanism of IL-24 on EMT and to verify whether IL-37 could alleviate IL-24-induced EMT in chronic asthma. Methods BEAS-2B cells were exposed to IL-24, and cell migration was assessed by wound healing and Transwell assays. The expression of EMT-related biomarkers (E-cadherin, vimentin, and α-SMA) was evaluated after the cells were stimulated with IL-24 with or without IL-37. A murine asthma model was established by intranasal administration of house dust mite (HDM) extracts for 5 weeks, and the effects of IL-24 and IL-37 on EMT and airway remodeling were investigated by intranasal administration of si-IL-24 and rhIL-37. Results We observed that IL-24 significantly enhanced the migration of BEAS-2B cells in vitro. IL-24 promoted the expression of the EMT biomarkers vimentin and α-SMA via the STAT3 and ERK1/2 pathways. In addition, we found that IL-37 partially reversed IL-24-induced EMT in BEAS-2B cells by blocking the ERK1/2 and STAT3 pathways. Similarly, the in vivo results showed that IL-24 was overexpressed in the airway epithelium of an HDM-induced chronic asthma model, and IL-24 silencing or IL-37 treatment could reverse EMT biomarker expression. Conclusions Overall, these findings indicated that IL-37 mitigated HDM-induced airway remodeling by inhibiting IL-24-mediated EMT via the ERK1/2 and STAT3 pathways, thereby providing experimental evidence for IL-24 as a novel therapeutic target and IL-37 as a promising agent for treating severe asthma.
Purpose Neutrophilic asthma is associated with asthma exacerbation, steroid insensitivity, and severe asthma. Interleukin (IL)-24 is overexpressed in asthma and is involved in the pathogenesis of several allergic inflammatory diseases. However, the role and specific mechanism of IL-24 in neutrophilic asthma are unclear. We aimed to elucidate the roles of IL-24 and IL-37 in neutrophilic asthma, the relationships with IL-17A and the mechanisms regulating neutrophilic asthma progression. Methods Purified human neutrophils were isolated from healthy volunteers, and a cell coculture system was used to evaluate the function of IL-24 in epithelium-derived IL-17A-dependent neutrophil migration. IL-37 or a small interfering RNA (siRNA) targeting IL-24 was delivered intranasally to verify the effect in a murine model of house dust mite (HDM)/lipopolysaccharide (LPS)-induced neutrophilic asthma. Results IL-24 enhanced IL-17A production in bronchial epithelial cells via the STAT3 and ERK1/2 signaling pathways; this effect was reversed by exogenous IL-37. Anti-IL-17A monoclonal antibodies reduced neutrophil chemotaxis induced by IL-24-treated epithelial cells in vitro . Increased IL-24 and IL-17A expression in the airway epithelium was observed in HDM/LPS-induced neutrophilic asthma. IL-37 administration or IL-24 silencing attenuated neutrophilic asthma, reducing IL-17A levels and decreasing neutrophil airway infiltration, airway hyperresponsiveness, and goblet cell metaplasia. Silencing IL-24 inhibited T-helper 17 (Th17) immune responses, but not Th1 or Th2 immune responses, in the lungs of a neutrophilic asthma model. Conclusions IL-24 aggravated neutrophilic airway inflammation by increasing epithelium-derived IL-17A production, which could be suppressed by IL-37. Targeting the IL-24/IL-17A signaling axis is a potential strategy, and IL-37 is a potential candidate agent for alleviating neutrophilic airway inflammation in asthma.
Asthma is a chronic lung disease involving airway inflammation and fibrosis. Fibroblasts are the main effector cells important for lung tissue production which becomes abnormal in asthmatics and is one of the main contributors to airway fibrosis. Although fibroblasts were traditionally viewed solely as structural cells, they have been discovered to be highly active, and involved in lung inflammatory and fibrotic processes in asthma. In line with this, using 2D and 3D in vitro co-culture models, a complex interaction between lung fibroblasts and various immune cells important for the pathogenesis of asthma have been recently uncovered. Hence, in this review, we provide the first-ever summary of various studies that used 2D and 3D in vitro co-culture models to assess the nature of aberrant immune cell-fibroblast interactions and their contributions to chronic inflammation and fibrotic mechanisms in asthma pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.