To improve solid precipitation monitoring in the hydrology and meteorology field, 1-min precipitation data observed by the PARticle SIze VELocity (PARSIVEL) disdrometer in Nanjing, eastern China, from February 2014 to February 2019 for all days with solid precipitation, were used to study the microphysical characteristics of winter precipitation. In this study, the empirical V-D (velocity–diameter) relationships and observed surface temperature are used for matching precipitation types, and the precipitation data are divided into rain, graupel, wet snow and dry snow. The results show that dry snow and wet snow have maximum Dm (mass-weighted mean diameter) and minimum log10Nw (normalized intercept parameter), while rain shows the opposite. Additionally, the μ-Λ (shape parameter–slope parameter) curve of dry snow and wet snow is very close, and the μ value of dry snow and wet snow is higher than that of graupel and higher than that of rain for the same Λ value. Furthermore, the Ze-S (equivalent reflectivity factor–precipitation intensity) relationships among different types of precipitation are significantly different. If only the Ze-S relationship of rain is used for quantitative precipitation estimation (QPE), then, for small precipitation intensity, solid precipitation will be overestimated, while, for large precipitation intensity, it will be underestimated.
In this paper, a water vapor density inversion model based on the long short-term memory (LSTM) network is proposed for E-band commercial microwave links (CMLs). A full-duplex E-band microwave link located in Prague (two sublinks with frequencies of 73.5 GHz and 83.5 GHz, both vertically polarized) was used to verify the performance of the model. The results show that the model inversion results are in good agreement with the water vapor density calculated by temperature and humidity sensors. Compared with previous water vapor inversion methods based on CMLs, this model has a higher temporal resolution and can realize real-time monitoring.
A method for identifying hydrometeor types (rain, graupel, and wet snow) based on a microwave link is proposed in this paper. The measured hydrometeor size distribution (HSD) data from the winters of 2014 to 2019 in Nanjing, China, were used to carry out simulation experiments to verify the performance of the model. Single-, dual-, and tri-frequency models (combinations of 15 GHz, 18 GHz, 25 GHz, 38 GHz, 50 GHz, 60 GHz, 70 GHz, and 80 GHz) were established with the extreme learning machine (ELM) algorithm. The results showed that the performance of the tri-frequency models was overall better than that of the dual-frequency models, for which the performance was better than that of the single-frequency models. The mean (maximum) test set accuracies of the single-frequency, dual-frequency, and tri-frequency models reached 75.8%, 80.7%, and 83.2% (83.0%, 84.4%, and 85.6%), respectively. For the dual-frequency and tri-frequency models, it was found that the accuracy increased with the overall frequency or the frequency difference. In addition, the influences of different noise levels on the model performance were also analyzed. Finally, the effects of position and length of link relative to precipitation cell were analyzed and are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.