BackgroundThe rise in dengue fever cases and the absence of dengue vaccines will likely cause governments to consider various types of effective means for controlling the disease. Given strong public interests in potential dengue vaccines, it is essential to understand the private economic benefits of dengue vaccines for accelerated introduction of vaccines into the public sector program and private markets of high-risk countries.Methodology/Principal FindingsA contingent valuation study for a hypothetical dengue vaccine was administered to 400 households in a multi-country setting: Vietnam, Thailand, and Colombia. All respondents received a description of the hypothetical dengue vaccine scenarios of 70% or 95% effectiveness for 10 or 30 years with a three dose series. Five price points were determined after pilot tests in order to reflect different local situations such as household income levels and general perceptions towards dengue fever. We adopted either Poisson or negative binomial regression models to calculate average willingness-to-pay (WTP), as well as median WTP. We found that there is a significant demand for dengue vaccines. The parametric median WTP is $26.4 ($8.8 per dose) in Vietnam, $70.3 ($23.4 per dose) in Thailand, and $23 ($7.7 per dose) in Colombia. Our study also suggests that respondents place more value on vaccinating young children than school age children and adults.Conclusions/SignificanceKnowing that dengue vaccines are not yet available, our study provides critical information to both public and private sectors. The study results can be used to ensure broad coverage with an affordable price and incorporated into cost benefit analyses, which can inform prioritization of alternative health interventions at the national level.
BackgroundDengue fever is a major public health concern in many parts of the tropics and subtropics. The first dengue vaccine has already been licensed in six countries. Given the growing interests in the effective use of the vaccine, it is critical to understand the economic burden of dengue fever to guide decision-makers in setting health policy priorities.Methods/Principal findingsA standardized cost-of-illness study was conducted in three dengue endemic countries: Vietnam, Thailand, and Colombia. In order to capture all costs during the entire period of illness, patients were tested with rapid diagnostic tests on the first day of their clinical visits, and multiple interviews were scheduled until the patients recovered from the current illness. Various cost items were collected such as direct medical and non-medical costs, indirect costs, and non-out-of-pocket costs. In addition, socio-economic factors affecting disease severity were also identified by adopting a logit model. We found that total cost per episode ranges from $141 to $385 for inpatient and from $40 to $158 outpatient, with Colombia having the highest and Thailand having the lowest. The percentage of the private economic burden of dengue fever was highest in the low-income group and lowest in the high-income group. The logit analyses showed that early treatment, higher education, and better knowledge of dengue disease would reduce the probability of developing more severe illness.Conclusions/SignificanceThe cost of dengue fever is substantial in the three dengue endemic countries. Our study findings can be used to consider accelerated introduction of vaccines into the public and private sector programs and prioritize alternative health interventions among competing health problems. In addition, a community would be better off by propagating the socio-economic factors identified in this study, which may prevent its members from developing severe illness in the long run.
IntroductionDengue is an important and well-documented public health problem in the Asia-Pacific and Latin American regions. However, in Africa, information on disease burden is limited to case reports and reports of sporadic outbreaks, thus hindering the implementation of public health actions for disease control. To gather evidence on the undocumented burden of dengue in Africa, epidemiological studies with standardised methods were launched in three locations in Africa.Methods and analysisIn 2014–2017, the Dengue Vaccine Initiative initiated field studies at three sites in Ouagadougou, Burkina Faso; Lambaréné, Gabon and Mombasa, Kenya to obtain comparable incidence data on dengue and assess its burden through standardised hospital-based surveillance and community-based serological methods. Multidisciplinary measurements of the burden of dengue were obtained through field studies that included passive facility-based fever surveillance, cost-of-illness surveys, serological surveys and healthcare utilisation surveys. All three sites conducted case detection using standardised procedures with uniform laboratory assays to diagnose dengue. Healthcare utilisation surveys were conducted to adjust population denominators in incidence calculations for differing healthcare seeking patterns. The fever surveillance data will allow calculation of age-specific incidence rates and comparison of symptomatic presentation between patients with dengue and non-dengue using multivariable logistic regression. Serological surveys assessed changes in immune status of cohorts of approximately 3000 randomly selected residents at each site at 6-month intervals. The age-stratified serosurvey data will allow calculation of seroprevalence and force of infection of dengue. Cost-of-illness evaluations were conducted among patients with acute dengue by Rapid Diagnostic Test.Ethics and disseminationBy standardising methods to evaluate dengue burden across several sites in Africa, these studies will generate evidence for dengue burden in Africa and data will be disseminated as publication in peer-review journals in 2018.
BackgroundWhile the global burden of typhoid fever has been often brought up for attention, the detailed surveillance information has only been available for the limited number of countries. As more efficacious vaccines will be available in the near future, it is essential to understand the geographically diverse patterns of typhoid risk levels and to prioritize the right populations for vaccination to effectively control the disease.MethodsA composite index called the typhoid risk factor (TRF) index was created based on data with the Global Positioning System (GPS). Demographic and Health Surveys (DHS) and National Geographical Data Center (NGDC) satellite lights data were used for this analysis. A count model was adopted to validate the TRF index against the existing surveillance burden data. The TRF index was then re-estimated for 66 countries using the most recent data and mapped out for two geographical levels (sub-national boundary and grid-cell levels).ResultsThe TRF index which consists of drinking water sources, toilet facility types, and population density appeared to be statistically significant to explain variation in the disease burden data. The mapping analysis showed that typhoid risk levels vary not only by country but also by sub-national region. The grid-cell level analysis highlighted that the distribution of typhoid risk factors is uneven within the sub-national boundary level. Typhoid risk levels are geographically heterogeneous.ConclusionsGiven the insufficient number of surveillance studies, the TRF index serves as a useful tool by capturing multiple risk factors of the disease into a single indicator. This will help decision makers identify high risk areas for typhoid as well as other waterborne diseases. Further, the study outcome can guide researchers to find relevant places for future surveillance studies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-016-2074-1) contains supplementary material, which is available to authorized users.
Background: Dengue fever is a major public health problem in Colombia. A fever surveillance study was conducted for evaluation of the clinical, epidemiological, and molecular patterns of dengue, prior to Chikungunya and Zika epidemics. Methods: In November 2011-February 2014, a passive facility-based surveillance was implemented in Santa Cruz Hospital, Medellin, and enrolled eligible febrile patients between 1 and 65 years-of-age. Acute and convalescent blood samples were collected 10-21 days apart and tested for dengue using IgM/IgG ELISA. RNA was extracted for serotyping using RT-PCR on acute samples and genotyping was performed by sequencing. Results: Among 537 febrile patients enrolled during the study period, 29% (n = 155) were identified to be denguepositive. Only 7% of dengue cases were hospitalized, but dengue-positive patients were 2.6 times more likely to be hospitalized, compared to non-dengue cases, based on a logistic regression. From those tested with RT-PCR (n = 173), 17 were dengue-confirmed based on PCR and/or virus isolation showing mostly DENV-3 (n = 9) and DENV-4 (n = 7) with 1 DENV-1. Genotyping results showed that: DENV-1 isolate belongs to the genotype V or American/African genotype; DENV-3 isolates belong to genotype III; and DENV-4 isolates belong to the II genotype and specifically to the IIb subgenotype or linage. Conclusions: Our surveillance documented considerable dengue burden in Santa Cruz comuna during non-epidemic years, and genetic diversity of circulating DENV isolates, captured prior to Chikungunya epidemic in 2014 and Zika epidemic in 2015. Our study findings underscore the need for continued surveillance and monitoring of dengue and other arboviruses and serve as epidemiological and molecular evidence base for future studies to assess changes in DENV transmission in Medellin, given emerging and re-emerging arboviral diseases in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.