The RAS-ERK pathway is known to play a pivotal role in differentiation, proliferation and tumour progression. Here, we show that ERK downregulates Forkhead box O 3a (FOXO3a) by directly interacting with and phosphorylating FOXO3a at Ser 294, Ser 344 and Ser 425, which NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript consequently promotes cell proliferation and tumorigenesis. The ERK-phosphorylated FOXO3a degrades via an MDM2-mediated ubiquitin-proteasome pathway. However, the nonphosphorylated FOXO3a mutant is resistant to the interaction and degradation by murine double minute 2 (MDM2), thereby resulting in a strong inhibition of cell proliferation and tumorigenicity. Taken together, our study elucidates a novel pathway in cell growth and tumorigenesis through negative regulation of FOXO3a by RAS-ERK and MDM2.The constitutive activation of certain signal transduction cascades leads to the development of tumours and the resistance of tumours to clinical therapy 1,2 . The RAS-ERK pathway triggers one of these cascades and governs many important functions, such as cell fate, differentiation, proliferation and survival in invertebrate and mammalian cells 3,4 . Human tumours frequently overexpress RAS or harbour activated RAS with a point mutation, which contributes substantially to tumour cell growth, invasion and angiogenesis 1, 2 , 5 -8. Cell plasma membrane receptor tyrosine kinases activate RAS GTPases, and GTP-bound RAS activates A-RAF, B-RAF and RAF-1 (ref. 10,17,18,21 , but the E3 ubiquitin ligase responsible for FOXO3a degradation has yet to be identified. MDM2, an E3 ubiquitin ligase plays an important role in the development of multiple human cancers through degrading tumour suppressor proteins, such as p53, RB and E-cadherin [22][23][24][25] . In addition, MDM2 has been shown to be regulated by the RAS-ERK signalling pathway 26 and blocking ERK activity with an MEK1 inhibitor, U0126, reduces MDM2 expression in breast cancer cells 27 .Here, we identify a novel pathway involving the downregulation of FOXO3a expression by RAS-ERK and MDM2, which leads to promotion of cell growth and tumorigenesis. We show that ERK interacts with and phosphorylates FOXO3a at Ser 294, Ser 344 and Ser 425; phosphorylation of FOXO3a at these residues increases FOXO3a-MDM2 interaction and enhances FOXO3a degradation via an MDM2-dependent ubiquitin-proteasome pathway. The non-phosphorylated FOXO3a-mimic mutant, compared to the phosphorylated FOXO3a-mimic mutant, exhibits more resistance to the interaction and degradation by MDM2, resulting in a strong inhibition of cell proliferation in vitro and tumorigenesis in vivo. RESULTS ERK suppresses FOXO3a stability and induces its nuclear exclusionThe RAS-ERK is an essential oncogenic signalling cascade that promotes tumour cell growth and development 8,28 . It was known that other oncogenic kinases, AKT and IKK, (Fig. 1b, c). Similarly, using Erk small interference RNA (siRNA) to knockdown ERK protein expression level in HeLa cells (Fig. 1d), or trea...
Flt-4, a VEGF receptor, is activated by its specific ligand, VEGF-C. The resultant signaling pathway promotes angiogenesis and/or lymphangiogenesis. This report provides evidence that the VEGF-C/Flt-4 axis enhances cancer cell mobility and invasiveness and contributes to the promotion of cancer cell metastasis. VEGF-C/Flt-4-mediated invasion and metastasis of cancer cells were found to require upregulation of the neural cell adhesion molecule contactin-1 through activation of the Src-p38 MAPK-C/EBP-dependent pathway. Examination of tumor tissues from various types of cancers revealed high levels of Flt-4 and VEGF-C expression that correlated closely with clinical metastasis and patient survival. The VEGF-C/Flt-4 axis, through upregulation of contactin-1, may regulate the invasive capacity in different types of cancer cells.
MicroRNAs (miRNAs) influence many biological processes, including cancer. They do so by posttranscriptionally repressing target mRNAs to which they have sequence complementarity. Although it has been postulated that miRNAs can regulate other miRNAs, this has never been shown experimentally to our knowledge. Here, we demonstrate that miR-107 negatively regulates the tumor suppressor miRNA let-7 via a direct interaction. miR-107 was found to be highly expressed in malignant tissue from patients with advanced breast cancer, and its expression was inversely correlated with let-7 expression in tumors and in cancer cell lines. Ectopic expression of miR-107 in human cancer cell lines led to destabilization of mature let-7, increased expression of let-7 targets, and increased malignant phenotypes. In contrast, depletion of endogenous miR-107 dramatically increased the stability of mature let-7 and led to downregulation of let-7 targets. Accordingly, miR-107 expression increased the tumorigenic and metastatic potential of a human breast cancer cell line in mice via inhibition of let-7 and upregulation of let-7 targets. By mutating individual sites within miR-107 and let-7, we found that miR-107 directly interacts with let-7 and that the internal loop of the let-7/miR-107 duplex is critical for repression of let-7 expression. Altogether, we have identified an oncogenic role for miR-107 and provide evidence of a transregulational interaction among miRNAs in human cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.