Fabricating ultrathin two-dimensional
(2D) covalent organic framework
(COF) nanosheets (NSs) in large scale and high yield still remains
a great challenge. This limits the exploration of the unique functionalities
and wide range of application potentials of such materials. Herein,
we develop a scalable general bottom-up approach to facilely synthesize
ultrathin (<2.1 nm) imine-based 2D COF NSs (including COF-366 NSs,
COF-367 NSs, COF-367-Co NSs, TAPB-PDA COF NSs, and TAPB-BPDA COF NSs)
in large scale (>100 mg) and high yield (>55%), via an imine-exchange
synthesis strategy through adding large excess amounts of 2,4,6-trimethylbenzaldehyde
into the reaction system under solvothermal conditions. Impressively,
visualization of the periodic pore lattice for COF-367 NSs by a scanning
tunneling microscope (STM) clearly discloses the ultrathin 2D COF
nature. In particular, the ultrathin COF-367-Co NSs isolated are subject
to the heterogeneous photocatalyst for CO2-to-CO conversion,
showing excellent efficiency with a CO production rate as high as
10 162 μmol g–1 h–1 and a selectivity of ca. 78% in aqueous media under visible-light
irradiation, far superior to corresponding bulk materials and comparable
with the thus far reported state-of-the-art visible-light driven heterocatalysts.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
The synthesis and biological efficacy of novel nanomicelles that rapidly disassemble and release their encapsulated payload intracellularly under tumor-relevant glutathione (GSH) levels are reported. The unique design includes a PEG-sheddable shell and poly(ε-benzyloxycarbonyl-l-lysine) core with a redox-sensitive disulfide linkage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.