The flame structure, extinction, and NO x emission characteristics of syngas/air nonpremixed flames, have been investigated numerically. The extinction stretch rate increased with the increase in the hydrogen proportion in the syngas and with lower fuel dilution and higher initial temperature. It also increased with pressure, except for the case of highly diluted fuel at high pressure. The maximum temperature and the emission index of nitric oxides (EINO x ) also increased in aforementioned conditions. The EINO x decreased with stretch rate in general, while the decreasing rate was found to be somewhat different between the cases of N 2 and CO 2 dilutions. The reaction paths of NO x formation were analyzed and represented as NO reaction path diagram. The increase in N radical resulted in larger NO x production at high initial temperature and pressure. As the pressure increases, EINOx increases slower due to the third-body recombination. The thermal NO mechanism is weakened for high dilution cases and non-thermal mechanisms prevail. The combustion conditions achieving higher extinction stretch rate can be lead to more NO x emission, therefore that the selection of optimum operation range is needed in syngas combustion.
The present study investigates the strain-rate-dependent mechanical performances of three different kinds of polymers in low-temperature applications, including plastic piping systems. Recently, lightweight constructions have been increasingly used in ship and offshore structures because using low-density materials reduces the structural weight of products. However, most of the existing research outcomes have not focused on low-temperature applications. In the present study, the mechanical and failure characteristics of acrylonitrile butadiene styrene (ABS), polyethylene (PE), and polyvinylidene fluoride (PVDF), which are the most widely used in ship and offshore industries, were tested under low-temperature conditions. The quasistatic tensile stress–strain responses of the polymers were observed at rates of 10−2, 10−3, and 10−4 s−1. As the temperature decreased, the tensile strength and Young’s modulus of tested polymers increased. The fracture strain and modulus of toughness of ABS were considerably lower than those of PE and PVDF at room and low temperatures. When compared with mechanical properties, PVDF displayed superior capability, and each polymer showed different fracture surface characteristics, such as ductility and brittleness. The quantitative material properties tested at various temperatures and strain-rates can be used as material information for the finite element (FE) analysis and material parameters for the development of advanced constitutive models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.